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» Cross-compiling toolkit designed to make embedded Linux application
development faster and easier.

» Provide a sandbox environment that emulates some characteristics of
the target system

» Dependencies are not mixed with host system's libraries

» Transparent cross-compiling, making building tools believe they
are doing a native compile job : no tweaking to support cross-
compiling, and fast compiling on a cheap x86 box.

» Supported architectures : arm and x86.
Experimental support for cris, mips and ppc.



http://www.scratchbox.org/

» Research started in 2002
» First public release in 2003
» Scratchbox 1.0 in February 2005, « Apophis »

» Still maintained, with regular updates
to various components from 2005 to 2008.

» Scratchbox 2.0
» In development : version 1.99.0.23 released in February 2008.

» Developed by Movial, sponsored by Nokia.

» Used for the Maemo environment of the Nokia Internet tablets.




» Chrooted environment
» Running on the host, but only target files are visible.
» Transparent cross-compiling

» Transparent execution, either through Qemu
or remote execution using sbrsh.

» Comes with ready-made cross-compiling toolchains
and tools to build Debian packages.

» Supports both uClibc and glibc.

» Provides basic root filesystems.




» On Debian/Ubuntu, add the Scratchbox repository to the package sources:
deb http://scratchbox.org/debian/ apophis main

» On other distributions, download binary tarballs from
http://scratchbox.org/download/files/sbox-releases/apophis/tarball/

P Install the following packages

P scratchbox-core

P scratchbox-1ibs

P A toolchain package, for example
scratchbox-toolchain-arm-gcc4.1l-uclibc20061004

» CPU transparency development kit
scratchbox-devkit-cputransp



http://scratchbox.org/download/files/sbox-releases/apophis/tarball/

P Scratchbox is installed in /scratchbox

» Add your account to the Scratchbox system
sudo /scratchbox/sbin/sbox adduser <user>

» This will
» Add your user to the sbox group
» Create files and directories inside the Scratchbox system for your user

» Need to log out and log in again for the group change to take effect

» Login using /scratchbox/login

» Scratchbox says « No current target »




» Two configuration tools
» sb-conf, command line
» sb-menu, semi-graphical curses interface

» Using sb-conf
sb-conf setup armdemo
—-compiler=arm-gcc4.l-uclibc20061004
—-devkits=cputransp
—-cputransp=/scratchbox/devkits/cputransp/bin/
gemu-arm-0.8.2-sb2

» Select the new target
sb-conf select armdemo




» The prompt is now
[ sbox-armdemo: ~] >

» Inside the armdemo target, in your home directory
» Your target root filesystem is stored in /targets/armdemo

P A set of symbolic links from / allows to think that you are
actually running on the target

» Some host tools, provided by Scratchbox, are still available

» The target root filesystem is empty. Let's ask to fill it with the C

library, headers and basic /etc files
sb-conf install armdemo -c -e

» Can also be done with sb-menu




» Test a simple program provided by Scratchbox
» Extract

tar xfz /scratchbox/packages/hello-world.tar.gz

» Configure and compile
cd hello-world
. /autogen.sh
make

» Check that the program is compiled for ARM
file hello
hello: ELF 32 bit LSB executable, ARM [...]

» Runit: ./hello




» Possible to cross-compile and install libraries in a
transparent way

» ./configure
» make
P make install

» And then, to cross-compile programs using these libraries.

» Cross-compiling is a lot easier.




» The user is chrooted into /scratchbox/users/<user>/

P This directory looks like a regular root filesystem
» Most directories are symbolic links to target/links/<dir>
» These are again symbolic links to target/<target>/<dir>
» They are switched when changing the target

» The home directory
In /scratchbox/users/<user>/home/ Is not target-
specific

» Various host directories are remounted
inside the target using the —-bind option of mount:
/scratchbox, /tmp, /proc, /dev/, /dev/pts, /dev/
shm, /sys
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P Target root filesystem is stored in /scratchbox/users/thomas/
targets/<target>

» Contains the filesystem hierarchy that should be used on the
embedded devices

» Configuration file stored in
/scratchbox/users/thomas/targets/<target>.config

» Defines the architecture, CPU transparency method, cross-
compiler, compiler and linker options, host compiler, host
compiler options...

» Many other variables can be defined to configure the target




» Toolchain binaries are executed through a wrapper

» The gcc binary is a symlink to sb_gcc wrapper, which runs
the correct compiler depending on the target configuration.

» Build systems think that they are building natively.

» Outside of Scratchbox, the toolchain can be used in a normal
way (ARCH-linux-gcc, etc.)




» Host tools take precedence over target binaries

» Host tools are hardwired to use libraries in
/scratchbox/host shared/

P PATH is set so that host binaries are used in preference over
target binaries, but it is not enough for absolute paths.

P Scratchbox uses a technique called binary redirection.
» Using LD PRELOAD, some libc functions are overriden

P exec () and friends

P uname () so that the target architecture is correctly returned.
P efc.




CPU transparency
» Execute target binaries transparently on the host

» Uses the kernel binfmt misc facility to run an interpreter
when a target binary is run.

P See /proc/sys/fs/binfmt misc/ for its configuration.
» The interpreter can then

» Use gemu user emulation to run the binary

» Use sbrsh to execute the binary directly on the target device
using a network connection.




» Scratchbox
http://www.scratchbox.org

» Scratchbox: Cross-compiling a Linux distribution
http://www.embedded-kernel-track.org/2005/scratchbox-fosdem20

FOSDEM 2005, Brussels

» Bringing Cross-Compiling to Debian
http://nchipin.kos.to/debconf-sbox2.pdf
Debconf 6, Mexico.
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» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development
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You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.
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Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs
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