9o

The Scratchbox
development
envi ronment Free Electrons

Embedded Linux
Michael Opdenacker Developers

Thomas Petazzoni

Free Electrons

© Copyright 2008-2009, Free Electrons
feedback@free-electrons.com

Document sources, updates and translations:
http://free-electrons.com/docs/scratchbox

@creative Corrections, suggestions, contributions and
c o ﬁoorf'!“?')? 5 translations are welcome!
Attribution — ShareAlike 3.0 Latest update Sep 15, 2009

You are free
© to copy, distribute, display, and perform the work
© to make derivative works
© to make commercial use of the work
Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under a license identical to
this one.
© For any reuse or distribution, you must make clear to others the license
terms of this work.
© Any of these conditions can be waived if you get permission from the
copyright holder.
Your fair use and other rights are in no way affected by the above.

License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://free-electrons.com/docs/scratchbox

http://www.scratchbox.org

» Cross-compiling toolkit designed to make embedded Linux application
development faster and easier.

» Provide a sandbox environment that emulates some characteristics of
the target system

» Dependencies are not mixed with host system's libraries

» Transparent cross-compiling, making building tools believe they
are doing a native compile job : no tweaking to support cross-
compiling, and fast compiling on a cheap x86 box.

» Supported architectures : arm and x86.
Experimental support for cris, mips and ppc.

http://www.scratchbox.org/

» Research started in 2002
» First public release in 2003
» Scratchbox 1.0 in February 2005, « Apophis »

» Still maintained, with regular updates
to various components from 2005 to 2008.

» Scratchbox 2.0
» In development : version 1.99.0.23 released in February 2008.

» Developed by Movial, sponsored by Nokia.

» Used for the Maemo environment of the Nokia Internet tablets.

» Chrooted environment
» Running on the host, but only target files are visible.
» Transparent cross-compiling

» Transparent execution, either through Qemu
or remote execution using sbrsh.

» Comes with ready-made cross-compiling toolchains
and tools to build Debian packages.

» Supports both uClibc and glibc.

» Provides basic root filesystems.

» On Debian/Ubuntu, add the Scratchbox repository to the package sources:
deb http://scratchbox.org/debian/ apophis main

» On other distributions, download binary tarballs from
http://scratchbox.org/download/files/sbox-releases/apophis/tarball/

P Install the following packages

P scratchbox-core

P scratchbox-1ibs

P A toolchain package, for example
scratchbox-toolchain-arm-gcc4.1l-uclibc20061004

» CPU transparency development kit
scratchbox-devkit-cputransp

http://scratchbox.org/download/files/sbox-releases/apophis/tarball/

P Scratchbox is installed in /scratchbox

» Add your account to the Scratchbox system
sudo /scratchbox/sbin/sbox adduser <user>

» This will
» Add your user to the sbox group
» Create files and directories inside the Scratchbox system for your user

» Need to log out and log in again for the group change to take effect

» Login using /scratchbox/login

» Scratchbox says « No current target »

» Two configuration tools
» sb-conf, command line
» sb-menu, semi-graphical curses interface

» Using sb-conf
sb-conf setup armdemo
—-compiler=arm-gcc4.l-uclibc20061004
—-devkits=cputransp
—-cputransp=/scratchbox/devkits/cputransp/bin/
gemu-arm-0.8.2-sb2

» Select the new target
sb-conf select armdemo

» The prompt is now
[sbox-armdemo: ~] >

» Inside the armdemo target, in your home directory
» Your target root filesystem is stored in /targets/armdemo

P A set of symbolic links from / allows to think that you are
actually running on the target

» Some host tools, provided by Scratchbox, are still available

» The target root filesystem is empty. Let's ask to fill it with the C

library, headers and basic /etc files
sb-conf install armdemo -c -e

» Can also be done with sb-menu

» Test a simple program provided by Scratchbox
» Extract

tar xfz /scratchbox/packages/hello-world.tar.gz

» Configure and compile
cd hello-world
. /autogen.sh
make

» Check that the program is compiled for ARM
file hello
hello: ELF 32 bit LSB executable, ARM [...]

» Runit: ./hello

» Possible to cross-compile and install libraries in a
transparent way

» ./configure
» make
P make install

» And then, to cross-compile programs using these libraries.

» Cross-compiling is a lot easier.

» The user is chrooted into /scratchbox/users/<user>/

P This directory looks like a regular root filesystem
» Most directories are symbolic links to target/links/<dir>
» These are again symbolic links to target/<target>/<dir>
» They are switched when changing the target

» The home directory
In /scratchbox/users/<user>/home/ Is not target-
specific

» Various host directories are remounted
inside the target using the —-bind option of mount:
/scratchbox, /tmp, /proc, /dev/, /dev/pts, /dev/
shm, /sys

12

P Target root filesystem is stored in /scratchbox/users/thomas/
targets/<target>

» Contains the filesystem hierarchy that should be used on the
embedded devices

» Configuration file stored in
/scratchbox/users/thomas/targets/<target>.config

» Defines the architecture, CPU transparency method, cross-
compiler, compiler and linker options, host compiler, host
compiler options...

» Many other variables can be defined to configure the target

» Toolchain binaries are executed through a wrapper

» The gcc binary is a symlink to sb_gcc wrapper, which runs
the correct compiler depending on the target configuration.

» Build systems think that they are building natively.

» Outside of Scratchbox, the toolchain can be used in a normal
way (ARCH-linux-gcc, etc.)

» Host tools take precedence over target binaries

» Host tools are hardwired to use libraries in
/scratchbox/host shared/

P PATH is set so that host binaries are used in preference over
target binaries, but it is not enough for absolute paths.

P Scratchbox uses a technique called binary redirection.
» Using LD PRELOAD, some libc functions are overriden

P exec () and friends

P uname () so that the target architecture is correctly returned.
P efc.

CPU transparency
» Execute target binaries transparently on the host

» Uses the kernel binfmt misc facility to run an interpreter
when a target binary is run.

P See /proc/sys/fs/binfmt misc/ for its configuration.
» The interpreter can then

» Use gemu user emulation to run the binary

» Use sbrsh to execute the binary directly on the target device
using a network connection.

» Scratchbox
http://www.scratchbox.org

» Scratchbox: Cross-compiling a Linux distribution
http://www.embedded-kernel-track.org/2005/scratchbox-fosdem20

FOSDEM 2005, Brussels

» Bringing Cross-Compiling to Debian
http://nchipin.kos.to/debconf-sbox2.pdf
Debconf 6, Mexico.

http://www.scratchbox.org/
http://www.embedded-kernel-track.org/2005/scratchbox-fosdem2005.pdf
http://nchipin.kos.to/debconf-sbox2.pdf

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

