
© 2004-2009 Free Electrons, http://free-electrons.com Creative Commons License

Sysdev - System development with Scratchbox

Objective: creating another system from scratch, with a
DirectFB interface, using the Scratchbox cross-
compiling environment.

After this lab, you will

be able to create a non trivial system from scratch, with elaborate
applications and shared libraries.

see how easy it can be to create an embedded system with the
Scratchbox environment, which cross-compiling made as easy as
native compiling.

get more familiar with the DirectFB library and its capabilities.

get familiar with compiling standard GNU/Linux libraries and
tools from their sources.

be able to use NFS to make the target system boot from a
directory shared with the development host.

be amazed by the capabilities of the qemu emulator!

see how small the whole working system can be, once all
development-only stuff is removed.

Environment setup

Since version 8.04, Ubuntu has extra protections against application
and kernel vulnerabilities. However, they interfere with tools like
Scratchbox.

In the /etc/sysctl.conf file, add the below lines at the end:

Needed for Scratchbox
vm.vdso_enabled = 0
vm.mmap_min_addr = 4096

Now load the new values:

sudo /sbin/sysctl p /etc/sysctl.conf

Scratchbox installation

For all GNU/Linux distributions, Scratchbox tarballs are available at
http://scratchbox.org/download/files/sbox-releases/apophis/tarball/.
However, dedicated packages are available for the Debian and
Ubuntu distributions. They make Scratchbox installation much
easier, so we suggest you to use them in this lab.

First, we need to add the Scratchbox package repository, as
Scratchbox has not been officially integrated into Ubuntu. To do so,
add the following line to the /etc/apt/sources.list file:

deb http://scratchbox.org/debian/ apophis main

And run aptget update to download the list of packages. Then,
install the following packages using aptget install:

● scratchboxcore

● scratchboxlibs

Embedded Linux
system development

Training lab book

Setting vm.mmap_min_addr and
vm.vdso_enabled in
/etc/sysctl.conf is equivalent to
writing the same values in /proc/sys/
vm/mmap_min_addr and in
/proc/sys/vm/vdso_enabled.
/etc/sysctl.conf is the standard
way to enforce any /proc/sys/
settings in a permanent way.

http://scratchbox.org/download/files/sbox-releases/apophis/tarball/
file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2004-2009 Free Electrons, http://free-electrons.com Creative Commons License

● scratchboxdevkitcputransp

● scratchboxtoolchainarmgcc3.4uclibc0.9.28

Now add an user:

sudo /scratchbox/sbin/sbox_adduser <your_username>

Again, accept the default settings.

You may have re-login to your machine, so that you get sbox group
privileges needed for running Scratchbox. Under your regular
account, you can check that this is done by issuing the groups
command. The sbox group should be listed.

Scratchbox target creation

Enter the Scratchbox chroot environment:

/scratchbox/login

Now configure Scratchbox:

sbmenu

First set up a new target:

Target name: armdemo

Compiler: armgcc3.4uclibc0.9.28

Devkits: cputransp

CPU-transparency method: qemuarm0.8.2sb2

Do you wish to install a rootstrap on the target: no

Do you wish to install files to the target: yes
Accept the default settings.

Do you wish to select the target: yes

Your shell is then restarted with a fake home directory
corresponding to the target you selected.

You can now only see the development environment and target files:

On your real root file system, your fake home directory is actually
stored in /scratchbox/users/<user>/home/<user>.

Target files are stored in
/scratchbox/users/<user>/targets/armdemo.

You can also notice that you just see the development tools provided
by Scratchbox:

which vi
/scratchbox/tools/bin/vi

Plenty of other tools you are familiar with are not available (other
editors, browsers, rsync...). You can still use them, but from outside
the Scratchbox chroot.

Cross-compiling test

First, let's check that our cross-compiling environment works fine.

tar zxf /scratchbox/packages/helloworld.tar.gz
cd helloworld/

2

Embedded Linux
System development

Training lab book

http://free-electrons.com/

© 2004-2009 Free Electrons, http://free-electrons.com Creative Commons License

./autogen.sh
make

file hello
hello: ELF 32bit LSB executable, ARM, version 1 (ARM),
dynamically linked (uses shared libs), not stripped

./hello
Hello World!

You can see that we could compile this simple program as if we were
natively compiling. The configuration scripts didn't even notice. Not
only cross-compiling is transparent, but executing programs for the
target platform is transparent too, thanks to using qemu behind the
scenes.

Compiling required libraries

We are going to compile programs based on the DirectFB graphical
library. As written it is documentation, prerequisites are the zlib,
libpng, libjpeg and freetype libraries.

Download and compile zlib 1.2.3 (http://www.zlib.net/):
./configure
make
make install

Download and compile libpng 1.2.20 or later
(http://www.libpng.org):
./configure
make
make install

Download and compile libjpeg 6b (http://www.ijg.org/):
./configure
make
make installlib

Download and compile freetype 2.3.5 (http://freetype.org):
./configure
make
make install

When no prefix argument is given to the configure scripts, all
compiled resources are installed in /usr/local. Check what was
installed in your target directory.

Compiling the DirectFB library

Download DirectFB 1.0.1 from http://directfb.org.

Once you extracted the sources,
comment out line 1570 in systems/fbdev/fbdev.c:

//if (dfb_fbdev_compatible_format(var, 0, 5, 6, 5, 0, 11, 5, 0))

 return DSPF_RGB16;

Configure and compile DirectFB as follows:

./configure disablex11 withgfxdrivers=none \
 withinputdrivers=keyboard,linuxinput,ps2mouse
make
make install

Embedded Linux
system development

Training lab book

Again, if you face trouble downloading
sources from a given server, you can
use our copies available in
http://free-electrons.com/labs/sources.

Downloading with wget is much easier
than from a browser: you don't have to
select the right directory to save files
to.

Of course, we cannot use any graphics
hardware acceleration drivers here.
With qemu, everything is eventually
implemented in software (unless qemu
managed to use capabilities of the host
graphics card).

This is a work-around for an apparent
bug in qemu arm LCD emulation or in
the corresponding kernel driver (see
http://mail.directfb.org/pipermail/direc
tfb-dev/2006-October/002364.html)

http://mail.directfb.org/pipermail/directfb-dev/2006-October/002364.html
http://mail.directfb.org/pipermail/directfb-dev/2006-October/002364.html
http://directfb.org/
http://freetype.org/
http://www.ijg.org/
http://www.libpng.org/
http://www.zlib.net/
http://free-electrons.com/labs/sources
file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2004-2009 Free Electrons, http://free-electrons.com Creative Commons License

DirectFB and its programs use pkgconfig to locate their resources.
So, you need to set the PKG_CONFIG_PATH environment variable to
signal where the DirectFB library and its headers were installed:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

If you didn't do it, DirectFB programs would think that the DirectFB
library is not installed.

Compiling the DirectFB examples

Download DirectFB-examples 1.0.0 (and not version 1.0.1) from
http://directfb.org.

Configure and compile the programs:

./configure
make
make install

Compiling BusyBox

Still inside the chroot, have a look at /bin, /usr/bin/, /sbin... You
can see that these directories are mostly empty!

To fill the target filesystem with standard Unix utilities, compile
BusyBox 1.7.2 with the configuration file available in /home/<user>/
felabs/sysdev/scratchbox/data/.

Install it in the target directory by configuring the location
for the make install command.

Completing the root filesystem

As in the previous lab, you need to add the device files which the
applications are going to need: /dev/console, /dev/tty5,
/dev/null.

Also add the device files needed by DirectFB: /dev/fb0
(framebuffer), /dev/tty0, /dev/tty1, /dev/tty2, /dev/tty3, /dev/
input/mice (all the mice in the system, merged in a single one).

Create the /proc/ and /sys/ directories.

As in the previous lab, also add a /etc/inittab file and the
corresponding /etc/init.d/rcS, doing the following things:

Mounting /proc and /sys.

Setting the PATH and LD_LIBRARY_PATH environment variables:
export PATH=/usr/local/bin:/bin:/usr/bin:/sbin:/usr/sbin
export LD_LIBRARY_PATH=/usr/local/lib:/lib:/usr/lib

Starting a new interactive shell.

Also create the /usr/local/lib/directfb1.00/gfxdrivers
directory. Otherwise, DirectFB programs will keep complaining that
this directory doesn't exist.

Booting the virtual board

At last! Your efforts will be rewarded.

Open a new user terminal and go to /home/<user>/felabs/sysdev/
scratchbox/.

4

Embedded Linux
System development

Training lab book

It's nice not to have to configure cross-
compiling, isn't it?

How did we know which ones to
create? Actually, just by waiting for
error messages from the applications!

http://directfb.org/
http://free-electrons.com/

© 2004-2009 Free Electrons, http://free-electrons.com Creative Commons License

For our best convenience, we are not going to create a root
filesystem out of the target files. Instead, we will boot directly from
the target directory.

Have a look at the /etc/exports file configuring the NFS server to
export the target directory.

Have a look at the run_qemu script in the current directory, and see
how the NFS client (here, the Linux kernel) connects to the NFS
server. In this script, make sure the path of the NFS exported
directory contains your user name.

Now, run this script and see your emulated target boot!

Testing the DirectFB example programs

Once you started these programs, you can exit them through the [q]
or [Esc] keys.

Here are our favorite programs:

df_andi: a population of 200 penguins invading your screen.

df_dok: benchmarking the performance of graphic primitives.

df_fire: drawing a wall of fire.

df_input: testing input drivers.

df_knuckles: Napoleon's head trying to say something.
Accelerated 3D graphics obviously making his message difficult to
understand.

df_neo: funny sprite animation.

df_palette: an animated color palette.

df_window: overlapping and moving translucent windows.

spacedream: moving stars.

Congratulations! You built all this by yourself!

By studying the DirectFB examples, you should be able to easily
create your own applications and interface for your real embedded
systems. With Scratchbox, system development is much easier than
you thought, isn't it?

Making your system smaller, ready for production

How big is your target filesystem? Wow!

Your system still contains stuff needed for development, but which
can be removed when moving to production.

First, create a copy of your target development directory, and modify
/etc/exports and run_qemu to use it instead.

In the copy, remove the below directories:

/usr/include (48 M), /usr/local/include (2.3M): C headers.

/usr/local/share/man (236 K): manual pages.

*.a library object files (13.2 M) and *la links to them: only
needed for compiling. Remove them with (caution: do that in the
chroot!):
find . name “*.a” exec rm {} ';'

Embedded Linux
system development

Training lab book

This way, whenever we make a change
to the target files from the host, we
won't have to update a target root
filesystem image and reboot, as we had
to do in the previous lab.

Don't hesitate to show your problems
(if any!) with your instructor. You can't
be far from a working system!

Some of them will miserably freeze
your virtual target. In that case, you
will have to restart qemu.

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2004-2009 Free Electrons, http://free-electrons.com Creative Commons License

find . name “*.la” exec rm {} ';'

/usr/lib/libstdc++.so.6.0.3 (2.4 M): unused shared libraries
(C++ not used in our case).

/usr/lib/libfakeroot (60 K), /usr/local/lib/pkgconfig
(28K): no longer needed in production.

/usr/bin/gdbserver, /usr/bin/strace (304 K): programs no
longer needed in production.

/usr/local/share/aclocal (14K): just needed for development.

At the end, how small was your system?

Detecting unused files

Implement a mechanism to identify files which are not accessed at
boot time, and through all the programs that you want to run.

Then, remove these files and check that your system still boots.

End result

You can check how small the system could be by having a look at our
page about this demo:
http://free-electrons.com/community/demos/qemu-arm-directfb/

You can go to this page to get updates and information about the
techniques you can use to reduce the size and boot time of this
demo.

6

Embedded Linux
System development

Training lab book

Ask your instructor if you don't have
enough ideas, or if you have questions
on how to implement these ideas.

http://free-electrons.com/community/demos/qemu-arm-directfb/
http://free-electrons.com/

