@

Embedded Linux
optimizations

Size, RAM, speed,
power, cost

Michael Opdenacker
Thomas Petazzoni
Free Electrons

© Copyright 2004-2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Dec 20, 2010,

Document sources, updates and translations:
http://free-electrons.com/docs/optimizations

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/optimizations

Make your penguin slimmer, faster, and reduce its consumption of fish!

Before 2 weeks after

http://celinuxforum.org/ | ﬁ_ CELINUX FOrUm

» Non profit organization, whose members are embedded Linux
companies and Consumer Electronics (CE) devices makers.

» Mission: develop the use of Linux in CE devices

» Hosts many projects to improve the suitability of Linux for CE
devices and embedded systems. All patches are meant to be
included in the mainline Linux kernel.

» Most of the ideas introduced in this presentation have been
gathered or even implemented by CE Linux Forum projects!

http://celinuxforum.org/

|deas for optimizing the Linux kernel and executables
» Increasing speed

» Reducing size: disk footprint and RAM

» Reducing power consumption

» Global perspective: cost and combined optimization effects

» The ultimate optimization tool!

Increasing speed
Reducing kernel boot time

@

CONFIG PRINTK TIME

» Configure it in the Kernel Hacking section.

» Adds timing information to kernel messages. Simple and robust.

® Not accurate enough on some platforms (1 jiffy = 10 ms on arm!)

See http://elinux.org/Printk_Times

[42949372
[42949372

.970000]
.970000]
[42949373.
[42949373.
[42949373.

180000]
180000]
180000]

Memory: 64MB = 64MB total

Memory: 54784KB available (1404K code, 296K data, 72K init)
Mount-cache hash table entries: 512

CPU: Testing write buffer coherency: ok

checking if image is initramfs...it isn't (bad gzip magic numb

ers); looks like an initrd
[42949373.200000] Freeing initrd memory: 8192K
[42949373.210000] NET: Registered protocol family 16

http://elinux.org/Printk_Times

@

CONFIG BOOT TRACER in kernel configuration

P Introduced in Linux 2.6.28

Based on the ftrace tracing infrastructure

P Allows to record the timings of

initcalls

P Boot with the initcall debug and printk.time=1 parameters,
run dmesg > boot.log and on your workstation, run
cat boot.log | perl scripts/bootgraph.pl > boot.svg
to generate a graphical representation

» Example on a board with at Atmel AT91 CPU:

?nﬂuiuﬁ

tty init pty init atmel _nand init

= = =
= ™ Y
= & =

\IIIINIIIW

Wiy
L1Xd

T: I

5s

ip_auto_config ,

» From Tim Bird
http://elinux.org/Grabserial

» A simple script to add timestamps to messages coming from a
serial console.

» Key advantage: starts counting very early (bootloader),
and doesn't just start when the kernel initializes.

» Another advantage: no overhead on the target, because run on
the host machine.

http://elinux.org/Grabserial

» Stopped initializing the IP address on the kernel command line
(old remains from NFS booting, was convenient not to hardcode
the IP address in the root filesystem.)

» Instead, did it in the /etc/init.d/rcS script.
» This saved 1.56 s on our AT91 board.

» You will save even more if you had other related options in your
kernel (DHCP, BOOP, RARP)

=Rm| IF: kernel level autoconfiguration IP_PNP
[
[
O

» PTYs are needed for remote terminals (through SSH)
They are not needed in our dedicated system!

» The number of PTYs can be reduced through the
CONFIG LEGACY PTY COUNT kernel parameter.
If this number is set to 4, we save 0.63 s on our Atmel board.

» As we're not using PTYs at all in our production system,
we disabled them with completely with CONFIG LEGACY PTYS.
We saved 0.64 s.

» Note that this can also be achieved without recompiling the
kernel, using the pty.legacy count kernel parameter.

» The output of kernel bootup messages to the console takes
time! Even worse: scrolling up in framebuffer consoles!
Console output not needed in production systems.

» Console output can be disabled with the quiet
argument in the Linux kernel command line (bootloader settings)

» Example:
root=/dev/ram0 rw init=/startup.sh quiet

» Benchmarks: can reduce boot time by 30 or even 50%!

See http://elinux.org/Disable _Console

http://elinux.org/Disable_Console

» At each boot, the Linux kernel calibrates a delay loop (for the
udelay function). This measures a loops per jiffy (1pj)
value. This takes about 25 jiffies (1 jiffy = time between 2 timer
interrupts).

In embedded systems, it can be about 250 ms!

» You just need to measure this once! Find the 1pj value in kernel
boot messages (if you don't get it in the console, boot Linux with
the loglevel=8 parameter). Example:

Calibrating using timer specific routine... 187.59
BogoMIPS (1pj=937984)

» At the next boots, start Linux with the below option:
lpj=<value>

12

» LZO is a compression algorithm that is much faster than gzip,
at the cost of a slightly degrade compression ratio (+10%).

» It was already in use in the kernel code (JFFS2, UBIFS...)

» Albin Tonnerre from Free Electrons added support for LZO
compressed kernels. His patches are waiting for inclusion in
mainstream Linux. Get them from http://lwn.net/Articles/350985/

= [Kernel compression mode
- Gzip KERNEL_GZIP
oy
-
KERNEL 170

13

http://lwn.net/Articles/350985/

» Saves approximately 0.25 s of boot time
See http://free-electrons.com/blog/lzo-kernel-compression/

» Our patch also allows LZO to be used for initramfs
decompression (CONFIG INITRAMFS COMPRESSION LZO=y)

» Another solution is to use an uncompressed kernel
(another patch will be sent), in which case kernel execution is just
marginally faster than with LZO, at the expense of a double size.

Gzip LZO Uncompressed
Kernel size 1.33Mb | 1.45Mb 2.45Mb
Bootloader + 0.30s (0.33s ().60s
kernel load time
Early kernel init 0.52s 0.33s 0.02s
time
Total time 0.82s (.66s 0.62s

14

http://free-electrons.com/blog/lzo-kernel-compression/

» |dea: make a slight change to at91bootstrap to directly load and
execute the Linux kernel image instead of the U-boot one.

» Rather straightforward when boot U-boot and the kernel are
loaded from NAND flash.

» Requires to hardcode the kernel command line in the kernel
image (CONFIG CMDLINE)

» Requires more development work when U-boot is loaded from a
different type of storage (SPI dataflash, for example).
In this case, you can keep U-boot, but remove all the features not
needed in production (USB, Ethernet, tftp...)

» Time savings: about 2 s

See http://free-electrons.com/blog/at91bootstrap-linux/

15

http://free-electrons.com/blog/at91bootstrap-linux/

Through the CONFIG EMBEDDED option

» Remove things that are not needed in your dedicated system
(features, debugging facilities and messages)

» Make sure you have no unused kernel drivers

» Disable support for loadable kernel modules and make all your
drivers static (unless there are multiple drivers than can be
loaded later).

» A smaller kernel is faster to load
» A simpler kernel executes faster

» At least, compile drivers as modules for devices not used at boot
time. This reduces time spent initializing drivers.

16

kexec system call: executes a new kernel from a running one.

» Must faster rebooting: doesn't go through bootstrap / bootloader
code.

» Great solution for rebooting after system (“firmware”) upgrades.

» Useful for automatic rebooting after kernel panics.

See http://developer.osdl.org/andyp/kexec/whitepaper/kexec.pdf
and Documentation/kdump/kdump.txt in kernel sources.

http://developer.osdl.org/andyp/kexec/whitepaper/kexec.pdf
http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt

Another option: use reboot=soft in the kernel command line
» When you reboot, the firmware will be skipped.
» Drawback: unlike kexec, cannot be chosen from userspace.

» Supported platforms: 1386, x86 64, arm, arm26 (Aug. 20006)

P See Documentation/kernel-parameters.txt
In the kernel sources for details. Not supported on all platforms.

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

ldea: spare memory at boot time and manage it by yourself!
» Assume you have 32 MB of RAM

» Boot your kernel with mem=30
The kernel will just manage the first 30 MB of RAM.

» Driver code can now reclaim the 2 MB left:
buf = ioremap (
0x1e00000, /* Start: 30 MB */

0x200000 /* Size: 2 MB */
) ;

» This saves time allocating memory.
Critical drivers are also sure to always have the RAM they need.

» Copy kernel and initramfs from flash to RAM using DMA
(Used by MontaVista in Dell Latitude ON)

» Fast boot, asynchronous initcalls: http://lwn.net/Articles/314808/
Mainlined, but API still used by very few drivers.
Mostly useful when your CPU has idle time in the boot process.

» Use deferred initcalls
See http://elinux.org/Deferred_Initcalls

» NAND: just check for bad blocks once
Atmel: see http://patchwork.ozlabs.org/patch/27652/

See http://elinux.org/Boot_Time for more resources

http://lwn.net/Articles/314808/
http://elinux.org/Deferred_Initcalls
http://patchwork.ozlabs.org/patch/27652/
http://elinux.org/Boot_Time

Increasing speed

System startup time and application speed

» SysV init:
Starts services sequentially. Waits for the current startup script to
be complete to start the next one! While dependencies exist,
some tasks can be run in parallel!

» Initng: http://initng.org
New alternative to SysV init, which can start services in parallel,
as soon as their preconditions are met.

http://initng.org/

@

W CPU (user+sysy [0 1/0 (wait)

== Dislk throughput [Disk utilization 17 ME/s

"y | ' ' ha | [[
.’r If | 1 Il’* I| III III III' IIII KI I IJ." A Ilu I|'I. IIl R | | I/ | IIII.
I i | I [|
L Al A0A BEMAR A AL Ak A AL
W Running &cpuy [Unint.sleep (/0 [Sleeping [Zombie
Os Ss 10s 15s 20s 25s 30s 35s 40s

W CPU {user+sys) [11/O (wait)

Initng wins!
System utilization is much

A Dpetter.
W Running @&cpuy Ll Unint.sleep (/0 [Sleeping [Zomhbie

Os Gs 10s 15s 20s

== Disk throughput] Disk utilization

» You can hunt system startup trouble by using the Bootchart program
(http://www.bootchart.org/).

» Bootchart is slow (Java) and not very accurate.
See http://elinux.org/Bootchart for solutions for embedded systems.

23

http://www.bootchart.org/
http://elinux.org/Bootchart

» Linux keeps the contents of all the files it reads in RAM (in the
page cache), as long as it doesn't need the RAM pages for
something else.

» Idea: load files (programs and libraries in particular) in RAM
cache before using them. Best done when the system is not
doing any 1/O.

» Thanks to this, programs are not stuck waiting for I/O.
Used the Knoppix distribution to achieve very nice boot speed-
ups.

» Also planned to be used by Initng.

» Not very useful for systems with very little RAM:
cached pages are recycled before the files are accessed.

24

» You can use the sys readahead() system call
in your C programs. See man readahead for details.

» You can also use the readahead-1ist utility, which reads a file
containing the list of files to load in cache.
Available on: http://freshmeat.net/projects/readahead-list/.

» In embedded systems using Busybox, you can use the
readahead command (implemented by Free Electrons).

http://freshmeat.net/projects/readahead-list/

» By default, most tools are compiled with compiler optimizations.
Make sure you use them for your own programs!

» -02 is the most common optimization switch of gcc.
Lots of optimization techniques are available.
See http://en.wikipedia.org/wiki/Compiler_optimization

» -03 can be also be used for speed critical executables.
However, there is done at the expense of code size (for example
“inlining”: replacing function calls by the function code itself).

http://en.wikipedia.org/wiki/Compiler_optimization

» liboil - http://liboil.freedesktop.org/
Library of functions optimized for special instructions
from several processors (Altivec, MMX, SSE, etc.)

» Mainly functions implementing loops on data arrays:
type conversion, copying, simple arithmetics, direct cosine
transform, random number generation...

» Transparent: keeps your application portable!

» So far mainly supports desktop processors

» License: BSD type

http://liboil.freedesktop.org/

Applies to executables using shared libraries

» To load and start an executable, the dynamic linker has a
significant amount of work to do (mainly address relocation)

» |t can take a lot of time for executables using many shared
libraries!

» In many systems in which executables and shared libraries never
change, the same job is done every time the executable is
started.

prelink
http://people.redhat.com/jakub/prelink/

» prelink modifies executables and shared libraries to simplify
the dynamic linker relocation work.

» This can greatly reduce startup time for big applications (50%
less for KDE!). This also saves memory consumed by
relocations.

» Can be used to reduce the startup time of a Linux system.

» Just needs to be run again when libraries or executables are
updated.

Details on http://elinux.org/Pre_Linking

29

http://people.redhat.com/jakub/prelink/
http://elinux.org/Pre_Linking

» Big, feature rich executables take time to load.
Particularly true for shell scripts calling the bash shell!

» |dea: replace standard Unix / GNU executables by lightweight, simplified
implementations by busybox (http://busybox.net).

» Implemented by Ubuntu 6.10 to reduce boot time, replacing bash (649 K)
by dash (79 K, see http://en.wikipedia.org/wiki/Debian_Almquist_shell).
This broke various shell scripts which used bash specific features
(“bashisms”).

» In non-embedded Linux systems
where feature-rich executables are still needed,
should at least use busybox ash for system scripts.

http://busybox.net/
http://en.wikipedia.org/wiki/Debian_Almquist_shell

» fork / exec system calls are very heavy.
Because of this, calls to executables from shells are slow.

» Even executing echo in busybox shells results in a fork syscall!

» Select Shells -> Standalone shell in busybox
configuration to make the busybox shell call applets whenever
possible.

» Pipes and back-quotes are also implemented by fork / exec.

You can reduce their usage in scripts. Example:
cat /proc/cpuinfo | grep model

Replace it with: grep model /proc/cpuinfo

See http://elinux.org/Optimize _RC_Scripts

31

http://elinux.org/Optimize_RC_Scripts

Run faster by using the most appropriate filesystems!

» Compressed read-only filesystem (block device):
use SquashFS (http://squashfs.sourceforge.net)
instead of CramFS (much slower, getting obsolete).

» NAND flash storage: you should try UBIFS
(http://www.linux-mtd.infradead.org/doc/ubifs.html), the
successor of JFFS2. It is much faster. You could also use
SquashFS. See our Choosing filesystems presentation
(http://free-electrons.com/docs/filesystems).

http://squashfs.sourceforge.net/
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://free-electrons.com/docs/filesystems

» Use RAM filesystems for temporary, speed critical files
with no need for permanent storage. Details in the kernel
sources: Documentation/filesystems/tmpfs.txt

» Benchmark your system and application on competing
filesystems! Reiser4 is more innovative and benchmarks
found it faster than ext3.

» Good to benchmark your system with JFS or XFS too.
XFS is reported to be the fastest to mount (good for
startup time), and JFS to have the lowest CPU utilization.
See http://www.debian-administration.org/articles/388

» ext4 is also ready to be used now.

33

http://free-electrons.com/kerneldoc/latest/filesystems/tmpfs.txt
http://www.debian-administration.org/articles/388

» When enough RAM is available, the OS keeps recently accessed files and
applications in RAM (page cache). This significantly speeds up any new usage.
However, depending on system activity, this may not last long.

P For programs that need fast startup even if they haven't been run for a long time:
copy them to a tmpfs filesystem at system startup! This makes sure they are
always accessed from the file cache in RAM (provided you do not have a swap
partition).

P See Documentation/filesystems/tmpfs.ixt in kernel sources for details about
tmpfs.

» Caution: don't use ramdisks instead!
Ramdisks duplicate files in RAM and unused space cannot be reclaimed.

P Caution: use with care. May impact overall performance.
Not needed if there's enough RAM to cache all files and programs.

34

http://free-electrons.com/kerneldoc/latest/filesystems/tmpfs.txt

The ultimate technique for instant boot!

» In development: start the system, required applications and the
user interface. Hibernate the system to disk / flash in this state.

» |In production: boot the kernel and restore the system state from
with this predefined hibernation image.

» This way, you don't have to initialize the programs one by one.
You just get the back to a valid state.

» Used in Sony cameras to achieve instant power on time.

» Unlike Suspend to RAM, still allows to remove batteries!

» Using a profiler can help to identify unexpected behavior degrading
application performance.

» For example, a profiler can tell you in which functions most of the

time is spent.
» You can then profile it with the whole Valgrind toolsuite:

Cachegrind: sources of cache misses and function statistics.
Massif: sources of memory allocation.

—

» Possible to start with strace and ltrace

» Advanced profiling with Valgrind: http://valgrind.org/

» Compile your application for x86 architecture

» See our Software Development presentation for details:
http://free-electrons.com/docs/swdev/

http://valgrind.org/
http://free-electrons.com/docs/swdev/

Reducing size
Kernel size and RAM usage

Goal: reduce the disk footprint and RAM size of the Linux kernel
http://elinux.org/Linux_Tiny

» Set of patches against the mainstream Linux kernel.
Mergeability in mainstream is a priority.
Many changes have already been merged in recent kernels.

» All features can be selected in kernel configuration
(CONFIG EMBEDDED).

» Also ships utilities or patches for tracking sources
of memory usage or code size.

http://elinux.org/Linux_Tiny

» Remove kernel messages (printk, BUG, panic...)

» Hunt excess inlining (speed vs. size tradeoff)
2.6.26: can allow gcc to uninline functions marked as inline:
(CONFIG OPTIMIZE INLINING=y). Only used by x86 so far.

» Hunt excess memory allocations

» Memory (slob instead of slab) allocator more space efficient for
small systems.

» Reduce the size of kernel data structures (may impact
performance)

» Simpler alternative implementations of kernel functionalities
with less features, or not supporting special cases.

39

» Remove some features which may not be needed
In some systems.

» Compiling optimizations for size.

» A smaller kernel executable also saves RAM
(unless executed in place from storage).

b4 gconf EE b 4
Eile Option Help
i I E
Option | Name =1 | Option | Name had
i Code maturity level options -OBUG() support BUG
- OEnabled accounting of kmalloc/kfree allocations KMALLOC_ACCOUNTING
= 5 i - O0Enabled auditing of bootmem allocations AUDIT_BOOTMEM
rted processor vendors PROCESSOR)| - JEnable doublefault exception handler DOUBLEFAULT
Loadable module support - OEnable panic reporting code PANIC M f
~-Processor type and features ~[OEnable ELF core dumps ELF_CORE a n y e at u re S
“Firmware Drivers - OEnable full-sized data structures for core BASE_FULL
--Power management options (ACPI, APM) - OEnable various size reductions for networking MET_SMALL .
- CPU Frequency scaling BmEnable futex support CO nflg u red O ut
—-Bus options (PCl, PCMCIA, EISA, MCA, ISA) “|| i~OEnable eventpoll support EPOLL
PCCARD (PCMCIA/CardBus) support - Enable tracing of system calls via ptrace PTRACE
“PCl Hotplug Support - OEnable VM86 support VMB6 Z
--Executable file formats - CJEnable AlO support AlO 4_—
- Networking - OEnable syscalls via sysenter SYSENTER
--Device Drivers - OEnable filesystem extended attribute support XATTR
--Generic Driver Options - OEnable POSIX file locking API FILE_LOCKING
- Memory Technology Devices (MTD) - [JEnable direct 10 support DIRECTIO
- Parallel port support - i~OEnable 16-bit UID system calls UlD16
~Plug and Play support °| i~OEnable INET peer information storage INETPEER
--Block devices I | ~OEnable inline measurement MEASURE_INLINES
.10 Schedulers - Optimize for size CC_OPTIMIZE_FOR_SIZE
- ATAJATAPI/MFM/RLL support - OUse full shmem filesystem SHMEM L
- SCSI device support -(0) Function alignment CC_ALIGN_FUNCTIONS
- Multi-device support (RAID and LVM) - (0) Label alignment CC_ALIGN_LABELS
-Fusion MPT device support -(0) Loop alignment CC_ALIGN_LOOPS
-lEEE 1394 (FireWire) support -(0) Jump alignment CC_ALIGN_JUMPS
- 120 device support ---IZ15et compiler arch flags for small 386 code TINY_CFLAGS
- Network device support ‘. Arch CFLAGS: -march=i386 TINY_CFLAGS_VAL
~ISDN subsystem - OCalculate CRC32 with tables CRC32_TABLES
- Telephony Support -Olnline current pointer calculation INLINE_THREADINFO
~-Input device support ~OUse full SLAB allocator SLAB Ea
. ‘~Hardware IO ports <] A N E
- Character devices Enable futex support (FUTEX) =
-Serial drivers y
:‘Il.:::lhdog Cards Disabling this option will cause the kernel to be h.uilt without :
e e e e] suppqrt for "fast userspace mutexes". The resulting kernel may not
<] i [#] || run glibc-based applications correctly. =

41

Tests on Linux 2.6.29, on a minimalistic but working x86 kernel

1800
1600
1400

1200

B Raw
B Compressed

1000

800

600

400

200

0

CONFIG_EMBEDDED=n CONFIG_EMBEDDED=y

Raw: -272 KB (-17%), Compressed: -136 KB (-20%) "
 Free Electrons. Kerel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

o

Replace init ramdisks (initrd) with initramfs:
much less overhead and ram waste!

Access
to file Re gular
l block device
Virtual File
System
l
Filesystem
driver cache
I
Block
driver
Copy

RAM

Access —Ramdlsk
to file block device
l
Virtual File
System File
l cache
Filesystem
driver
l
Block
driver

RAM

Access ramfs
to file
=\
Virtual File -
System —p» File
cache
RAM

» No block and filesystem overhead.
» No duplication in RAM.

» Files can be removed (reclaiming RAM) after use.

» Initramfs: ramfs archive embedded in the Linux kernel file.

Reducing size
Application size and RAM usage

Static linking

» All shared library code duplicated in the executables

o Allows not to copy the C library in the filesystem.
Simpler and smaller when very few executables (busybox)

® Library code duplication: bad for systems with more executables
(code size and RAM)

Best for small systems (< 1-2 MB) with few executables!

Dynamic linking

» Shared library code not duplicated in the executables
o Makes much smaller executables
o Saves space in RAM (bigger executables take more RAM)

® Requires the library to the copied to the filesystem

Best for medium to big systems (> 500 KB - 1 MB)

Using a lighter C library

» glibc (GNU C library): http://www.gnu.org/software/libc/
Found on most computer type GNU/Linux machines
Size on arm: approx 1.7 MB

» uClibc: http://www.uclibc.org/
Found in more and more embedded Linux systems!
Size on arm: approx 400 KB (you save 1.2 MB!)

» Executables are slightly smaller too:

C program Compiled with shared libraries Compiled statically
glibc uClibc uClibc
Plain “hello world” 4.6 K 44 K 475 K 25K
Busybox 245 K 231 K 843 K 311 K

48

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

http://www.gnu.org/software/libc/
http://www.uclibc.org/

» Need to compile all your executables with a uClibc toolchain.

» Ready-to-use toolchains can be found on
http://free-electrons.com/community/tools/uclibc

» You can very easily build your own with buildroot:
http://buildroot.uclibc.org/

» You also have to copy the uClibc files from the toolchain to the
/1ib directory in the target root filesystem.

» Ready-to-use filesystems can also be generated by buildroot.
You just need to add your specific stuff then.

http://free-electrons.com/community/tools/uclibc
http://buildroot.uclibc.org/

» Compiled executables and libraries contain extra information
which can be used to investigate problems in a debugger.

» This was useful for the tool developer, but not for the final user.

» To remove debugging information, use the strip command.
This can save a very significant amount of space!
gcc -o hello hello.c (output size: 4635 bytes)
strip hello (output size: 2852 bytes, -38.5%)

» Don't forget to strip libraries too!

@

You can use the £ile command to get the answer

gcc -o hello hello.c

file hello

hello: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.2.5, dynamically linked (uses
shared libs), not stripped

strip hello

hello: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.2.5, dynamically linked (uses
shared libs), stripped

You can use findstrip (http:/packages.debian.org/stable/source/perforate)
to find all executables and libraries that need stripping in your system.

http://packages.debian.org/stable/source/perforate

» Some lightweight tools, like busybox, are automatically stripped
when you build them.

» Makefiles for many standard tools offer a special command:
make install-strip

» Caution: stripping is architecture dependent.

Use the strip command from your cross-compiling toolchain:
arm-linux-strip potato

sstrip: “super strip”

Oy

http://muppetlabs.com/~breadbox/software/elfkickers.html

» Goes beyond strip and can strip out a few more bits that are
not used by Linux to start an executable.

» Can be used on libraries too. Minor limitation: processed
libraries can no longer be used to compile new executables.

» Can also be found in toolchains made by Buildroot (optional)

Best for tiny

4691 B 287783 B 11397 KB

2904 B (-38 %) 230408 B (-19.9 %) 9467 KB (-16.9 %) executables!

sstripped 1392 B (-70 %) 229701 B (-20.2 %) 9436 KB (-17.2 %)

53

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

http://muppetlabs.com/~breadbox/software/elfkickers.html

http://libraryopt.sourceforge.net/
» Contributed by MontaVista

» Examines the complete target file system, resolves all shared
library symbol references, and rebuilds the shared libraries with
only the object files required to satisfy the symbol references.

» Can also take care of stripping executables and libraries.

» However, requires to rebuild all the components from source.
Would be nicer to achieve this only with ELF manipulations.

http://libraryopt.sourceforge.net/

» Regular compiler optimizations simplifying code also reduce size

» You can also reduce the size of executables by asking gcc to

optimize generated code size:
gcc -0Os -0 husband husband.c

» -Os corresponds to —-02 optimizations except the ones increasing
size, plus extra size-specific ones.

» -Os is already used by default to build busybox.

» Possible to further reduce the size by compiling and optimizing all
sources at once, with the -fwhole-program --combine gccC
options.

» See http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
for all gcc optimization options.

55

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

B

250000
200000
150000
100000

50000

Executable size

Busybox

[None

B 02 (generic)
= O3 (speed)
[Os (size)

Dropbear

» When RAM is scarce, can be useful to abort applications that are
not in use (for example hidden graphical interfaces).

» Better to do it before the Linux Kernel OOM
(Out Of Memory) killer comes and makes bad decisions.

» You can use the “Linux Checkpoint / Restart” project to have the
Linux kernel save the state of a running application so that it can
later resume its execution from the time at which it was
checkpointed.

See http://www.linux-cr.org/ for details.

http://www.linux-cr.org/

Can significantly increase your storage capacity

» MTD (flash or ROM) storage: use UBIFS
or JFFS2 for small partitions.

» Block storage: use SquashFS (http://squashfs.sourceforge.net)
instead of CramFS for read-only partitions. It compresses much
better and is much faster too.

http://squashfs.sourceforge.net/

Software compiling and installing often create duplicate files...
Check that your root filesystem doesn’t contain any!

» dupmerge?2: http://sourceforge.net/projects/dupmerge
Replaces duplicate files by hard links.

» clink: http://free-electrons.com/community/tools/utils/clink
Replaces duplicate files by symbolic links.
Example: saves 4% of total space in Fedora Core 5.

» finddup: http://www.shelldorado.com/scripts/cmds/finddup
Finds duplicate files.

http://sourceforge.net/projects/dupmerge
http://free-electrons.com/community/tools/utils/clink
http://www.shelldorado.com/scripts/cmds/finddup

lon
INg power consumpt
Reduc

@

Kernel configuration: NO_HZ setting in Processor type and features

P To implement multitasking, the processor receives a timer interrupt
at a given frequency (every 4 ms by default on Linux 2.6). On idle systems,
this wakes up the processor all the time, just to realize there is nothing to do!

P Idea: when all processors are idle, disable the timer interrupt, and re-enable it
when something happens (a real interrupt). This saves power in laptops, in
embedded systems and with virtual servers!

P 2.6.24: supports x86, arm, mips and powerpc

Option Name
M Tickless System (Dynamic Ticks) NO HZ
OHigh Resolution Timer Support (NEW) HIGH_RES_TIMERS

61

PowerTOP

http://www.lesswatts.org/projects/powertop/

» With dynamic ticks, allows to fix parts of kernel code and
applications that wake up the system too often.

» PowerTOP allows to track the worst offenders

» Now available on ARM cpus implementing CPUidle

File Edit Yiew Jerminal Go Help

PowerTOP version 1.8 (C) 2007 Intel Corporation

Avg residency P-states (frequencies)
{cpu running} [12 b 1.71 Ghz

» Also gives you useful hints _
for reducing power.

0.6ms (0.0%)

idle per second : 81.2 interval: 15.8s

Power usage (ACPI estimate): 14.1W (6 hours) {long term: 136.4W,/0.7h)
Top causes for wakeups:
34.4% (31.9) cinterrupt> : ipw22080, Intel 52801DB-ICH4, Intel B28081DB-
19.4% (18.8) firefox-bin : futex_uﬂlt [hrtlner_wﬂkeunJ
15.5% (14.4) X : do_setitimer (it_real_fn)
11.5% (18.7) evolution : schedule_timeout (process_timeout)
<kernel modu usb_hcd_poll_rh_status (rh_timer_func)
interrup
=kernel cor

Termin:
fc "i{|'IF-IjIJ1F_ imeout {(proc
<kernel = : neigh_table_init_no

l
{
(
{
(
{
{
(o schedule timeout (process
{
(
(
i
{
{

0.2%

Suggestion: Disable the uwnus bluetooth interface with the following command:
heciconfig hei@ dow d hei_usb
Bluetooth is a radio sumes quite some er, and keeps USB busy as well
R - Refresh = Turn Bluetooth o

62

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

http://www.lesswatts.org/projects/powertop/

PowerTOP in action

PowerTOP version 1.8 (C) 28087 Intel Corporation

Cn Avg residency P-states (freguencies)
€O (cpu running) (12.08%) 1.60 Ghz B.0%
c1 0.0ms (0.0%) 1488 Mhz B.0%
Cc2 5.6ms (88.6%) 808 Mhz 2.8%
C3 @.0ms (©.0%) 608 Mhz 97.2%
c4 @.0ms (9.0%)

Wakeups-from-idle per second : 177.5 interval: 15.8s
Power usage (ACPI estimate): 18.4W (1.9 hours) (long term: 250.8W,/8.1h)

Top causes for wakeups:
48.2% (93.9) <interrupt> : uhci hcd:usbl, whci hcd:usb2, uhci hcd:usb3, ehci hcd:usb4, yenta,
16.1% .4} <interrupt= : libata

.7) firefox-bin : futex wait (hrtimer_ wakeup)

.8) hald-addon-cpuf : cpufreq governor dbs (delayed work timer fn)

.9) <interrupt= : Intel 82801DB-ICH4, ipw2200

.7 artsd : schedule_timepout (process_timeout)

.9) <kernel module= : usb hcd poll rh status (rh _timer func)

.9) gnome-screensav : schedule timeout (process timeout)

.9) <kernel core= : cfq completed request (cfg idle slice timer)

.3 kicker : schedule timeout (process timeout)

1) klipper : schedule timeout (process timeout)

.0) dhcdbd : schedule timeout (process timeout)

.0) artsd : do _setitimer (it _real_ fn)

[
=]

5.

w

un

L= I e B e R I S T L L
[e L I S I ¥

Suggestion: Enable laptop-mode by executing the following command:
echo 5 = /proc/sys/vm/laptop mode

R - Refresh f L - enable Laptop mode

63
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Configuration: CPU_FREQ in Power management options
» Allows to change the CPU frequency on the fly

» Supported architectures (2.6.20):
1386, sh, ia64, sparc64, x86 64, powerpc, arm (i.MX only).

» Usually controlled from userspace through /sys by a user
configurable governor process, according to CPU load, heat, battery
status... The most common is cpuspeed:
http://carlthompson.net/software/cpuspeed/

» Saves a significant amount of battery life in notebooks.

http://carlthompson.net/software/cpuspeed/

ldea: suspend hidden user interfaces to save CPU and power.

» Send a suspend (stop) signal:
kill -SIGTSTP <pid>

» Send a continue signal:
kill -SIGCONT <pid>

http://www.suspend2.net/

» Lots of great features for notebook users, such as RAM suspend
or hibernate to disk.

e Unfortunately, restricted on some Intel compatible processors
and targeting only machines with APM or ACPI (rarely found in
non PC embedded systems!).

® Not addressing the requirements of embedded systems (support
for other CPUs, voltage reduction...).

http://www.suspend2.net/

» http://free-electrons.com/docs/power/
Our presentation on power management in the Linux kernel
What you need to implement in your BSP and device drivers.

» http://lesswatts.org
Intel effort trying to create a Linux power saving community.
Mainly targets Intel processors.
Lots of useful resources.

» http://wiki.linaro.org/WorkingGroups/PowerManagement/
Ongoing development on the ARM platform.

» Tips and ideas for prolonging battery life:
http://j.mp/fVdxKh

http://free-electrons.com/docs/power/
http://lesswatts.org/
http://wiki.linaro.org/WorkingGroups/PowerManagement/
http://j.mp/fVdxKh

Global perspective
Cost and combined optimization effects

Combined benefits

More speed - CPU can run slower or stay longer - Slower, cheaper
in power saving mode CPU

Less RAM - Faster allocations - Fewer / smaller RAM chips: less - Fewer / cheaper
- Less swapping dynamic and standby power. RAM chips
- Sometimes less - CPU with less cache: less power - CPU with less
cache flushing cache: cheaper
Less space - Faster application - Less RAM usage - Fewer / smaller storage chips: less - Fewer / cheaper
loading from storage power storage
and in RAM.
- Sometimes, simpler,
faster code.
Less power - Cheaper batteries
- or cheaper AC/DC
converter

69

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

» We have seen many ways to optimize
an existing system.

» However, nothing replaces a good design!

» So, first carefully design and implement
your system and applications with their requirement
in mind.

» Then, use the optimization techniques to further improve
your system and the parts that you reused (kernel and
applications).

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

