
© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

Kernel – Network device driver programming

Objective: Develop a network device driver for the
AT91SAM9263 CPU from scratch.

Warning

In this lab, we are going to re-implement a driver that already
exists in the Linux kernel tree. Since the driver already exists, you
could just copy the code, compile it, and get it to work in a few
minutes. However, the purpose of this lab is to re-create this driver
from scratch, taking the time to understand all the code and all the
steps. So please play the game, and follow our adventure of
creating a network driver from scratch !

Setup

Go to the /home/<user>/felabs/linux/networking directory. It
contains:

• rootfs.jffs2, the JFFS2 image of a root filesystem,
containing the necessary tools to load and test the network
device driver. Obviously, since we are going to re-develop the
network driver, we cannot use NFS to mount our root
filesystem during development!

• module/, containing a skeleton of a kernel module

The datasheet of the device is available at http://www.free-
electrons.com/labs/at91sam9263-manual.pdf.

We'll need a special kernel for this lab because we need to remove
the official network driver of the Calao board. Follow these steps to
configure and compile the kernel:

• Grab the tarball of a recent kernel

• Modify the Makefile with ARCH=arm and adjust
CROSS_COMPILE to your cross-compiler

• Run make usba9263_defconfig to load the default
configuration for the Calao board

• Run make xconfig or make menuconfig, and in the
configuration utility, go to «Device Drivers» → «Network
device support» → «10/100 Mbit/s devices» and disable the
«Atmel MACB support».

Now, boot the board in U-Boot, transfer and flash the kernel and
root filesystem to the board, and adjust the bootargs parameter to
mount the root filesystem from flash. In U-Boot:

• nand erase 0 200000

• tftp 21000000 uImage

• nand write 21000000 0 200000

• nand erase 200000 400000

• tftp 21000000 rootfs.jffs2

• nand write 21000000 200000 ${filesize}

1

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://www.free-electrons.com/labs/at91sam9263-manual.pdf
http://www.free-electrons.com/labs/at91sam9263-manual.pdf
http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

• setenv bootcmd nboot 21000000

• setenv autostart yes

• setenv bootargs
mtdparts=atmel_nand:2m(kernel)ro,3m(rootfs)rw
root=/dev/mtdblock1 rootfstype=jffs2

• saveenv

Reboot your board, and see your kernel booting, mounting your
root filesystem and starting the userspace applications.

Testing the kernel module

Before we actually start developing the kernel driver, let's make
sure we can properly compile and test a simple kernel module. The
module/ directory in the current lab directory contains such a
simple kernel module. Start by adjusting the Makefile so that it
points to the location of your kernel sources, then compile the
module.

As we cannot transfer the module through the network, we'll use
the serial port to do so. Here's the procedure to do so:

• From Minicom, on the target, run the “rz” command (which is
a shortcut for « receive zmodem »). A few strange characters
will be displayed

• Then, again from Minicom, press “Ctrla s”, which is the
shortcut for the command to send files. A small dialog should
pop-up to select the transfer protocol, select zmodem.

• A new dialog box prompting for the file to transfer will show
up. Navigate to transfer the .ko file of your new kernel
module.

• At the end of the transfer, the “rz” command on the target
should be terminated. You can now insert and remove your
module from the kernel as usual, with insmod and rmmod.

Note: make sure to remove the .ko file from the target before
transferring a new version of the module. The “rz” command
doesn't overwrite existing files.

Registering a network interface

Obviously, the first and simplest step, is to register a network
interface in the module initialization function, and to remove in the
module cleanup function.

In the initialization function, use alloc_etherdev() to create a
net_device structure, set its netdev_ops member to an empty
net_device_ops structure, and register the interface using
register_netdev(). In the cleanup function, use
unregister_netdev() and free_netdev() to remove the interface
and free the memory. If you load this module, a new eth0 network
interface should appear in the target system.

Integration in the driver model

With the driver model, devices are not registered in the module
initialization function. Rather, the module registers a PCI driver, a
platform driver, a USB driver, etc. at initialization time, and the

2

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

driver model infrastructure will call a probe() method when a
device handled by our driver is detected.

So, let's integrate our driver in this kernel framework:

• Define a platform_driver structure, set the remove and
probe members so that they point to two new functions with
the proper prototype, and define the driver members to the
following substructure:
.driver = {
 .name = “macb”,
 .owner = THIS_MODULE,
}

• In the module initialization function, remove the existing code
register the platform driver with
platform_driver_register()

• In the module cleanup function, remove the existing code and
call platform_driver_unregister().

• Implement the netdrv_probe() function. It must do the same
as the previous initialization function (alloc_etherdev() and
register_netdev()), but must also

◦ Connect the network device (struct net_device) to the
underlying platform device. This is done using
SET_NETDEV_DEV(dev, & pdev>dev)
where dev is the struct net_device representing the
network interface, and pdev the platform device passed as
argument to the probe() method

◦ Set the platform device driver data pointer to the network
device, using
platform_set_drvdata(pdev, dev)
Both these calls allows to have cross-references between
the structure representing the network interface (high-
level) and the structure representing the platform device
(low-level)

• Implement the netdrv_remove() function. It must do the
same as the previous module cleanup function. This function
receives as argument a platform_device pointer, and not the
struct net_device pointer. So how do we get the struct
net_device pointer? By using the platform device driver data,
that we set in the probe() function:
struct net_device *dev = platform_get_drvdata(pdev)
After unregistering the network device
(unregister_netdev()), reset the platform device driver data
using platform_set_drvdata(pdev, NULL) and free the
network device structure (free_netdev()).

Once everything is implemented, compile your module, transfer it
to the target and load it. Does the eth0 interface appear as it used
to do? It shouldn't! Let's see why in the next section.

Enabling the platform device

A platform device is statically defined in the kernel source code,
more precisely in the board definition file. In our case, the board
definition file is arch/arm/machat91/boardusba9263.c. To
initialize the Ethernet controller, this file calls

3

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

ek_add_device_eth() which is defined in arch/arm/mach
at91/at91sam9263_devices.c (many boards use the same
AT91SAM9263 and therefore they share a lot of code).

This function ek_add_device_eth() only does something if
CONFIG_MACB or CONFIG_MACB_MODULE are defined (these are
defined when the official driver is compiled). Since we disabled the
official driver to compile our own, the ek_add_device_eth()
function is empty in our kernel, so that the
platform_device_register() for the Ethernet controller is never
called. As a workaround, change the line

#if defined(CONFIG_MACB) ||defined(CONFIG_MACB_MODULE)

by

#if 1

and then recompile and reflash the kernel on the board.

Of course, for a real driver integrated into the kernel tree, we
would use the same mechanism as the one used for the official
driver.

Mapping the I/O registers

Obviously, to access the I/O registers of the network card, we need
to map them into memory, using the ioremap() function. But prior
to doing that, we are at a point in the development of our driver
where we will need to store private information about the network
device: for now, the virtual address at which the I/O registers have
been remapped (later, other private informations will be stored).

So first, let's create a structure contain the private data, holding a
single member, pointer to the I/O registers:

struct netdrv_device
{
 void __iomem *regs;
};

Then, in the probe() function, change the call to
alloc_etherdev(0) to alloc_etherdev(sizeof(struct
netdrv_device)). The kernel will automatically allocate the
memory needed to store the private data. Then, at anytime in the
driver code, you can use netdev_priv() on a struct net_device
to get a pointer to the private structure. This area of memory will
be automatically freed by free_netdev(), so no special change is
required in the remove() function.

Now, let's do the mapping of the I/O registers itself. In the probe()
function:

• Use platform_get_resource() to get the physical address of
the I/O registers from the board definition file (see
arch/arm/machat91/at91sam9263_devices.c for the list of
resources for this device). This function returns a pointer to a
struct resource, which contains two interesting fields:

4

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

start and end (both are physical addresses)

• Call ioremap() to remap the memory area returned by
platform_get_resource(). The returned value, a virtual
address, should be stored in the private structure that we
allocated previously.

Of course, don't forget to do the error checking!

Finally, in the remove() function, call iounmap() at the proper
location to remove the memory mapping.

Now, to make it easier to develop the rest of the driver, we'll add
two more fields to our private struct netdrv_device:

• struct net_device *dev;

• struct platform_device *pdev;

And in the probe() function, we initialize them respectively to the
net_device pointer and the platform_device pointer. This way, in
the rest of the driver, we can just pass a struct netdrv_device
pointer to sub-functions, and they will be able to access the other
pieces of information.

Registering the IRQ

Registering the IRQ is very similar to mapping the I/O registers. In
the probe() function:

• Call platform_get_irq() to get the IRQ number of the
Ethernet controller. It should be stored in the irq field of the
net_device structure (as the net_device structure contains
such a field, there's no point in storing the IRQ number in our
private structure, as we did for the I/O registers virtual
address).

• Call request_irq() to register this IRQ number. This will
involve the creation of an interrupt handler. Just make it
return IRQ_NONE for the moment.

In the remove() function, don't forget to unregister the IRQ using
free_irq().

Configuring and enabling the clock

To configure the clock on the device, we'll first need some
definitions of register address and values. So, take the
AT91SAM9263 datasheet, chapter 41, about the EMAC Ethernet
controller. More specifically, the part 41.5, describing all the
registers, will be particularly useful in our case.

The clock configuration takes place in the Network Configuration
Register, EMAC_NCFG, so let's do:

#define EMAC_NCFG 0x4

Four values for the clock divider are possible, let's add defines for
them:

#define EMAC_CLK_DIV8 0
#define EMAC_CLK_DIV16 1
#define EMAC_CLK_DIV32 2
#define EMAC_CLK_DIV64 3

5

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

And the clock divider is defined at bit 10 and 11 is the NCFG
register, so let's add a define for this:

#define EMAC_NFCG_CLK_DIV_SHIFT 10

Now, in the probe() function, we'll use the clock API of the kernel.
Remember, the clock API is just clk_get()/clk_put(),
clk_enable()/clk_disable() and clk_get_rate(). So, in the
probe() function, we'll get and enable the “macb_clk” clock. The
clocks are defined statically in arch/arm/mach
at91/at91sam9263.c. The struct clk pointer returned by
clk_get() will be stored in the private structure struct
netdrv_device.

Once the clock has been get and enabled, we need to adjust the
divider of the Ethernet controller, according to the datasheet of the
CPU:

clk_hz = clk_get_rate(priv>clk);
if (clk_hz <= 20000000)
 config = (EMAC_CLK_DIV8 << EMAC_NCFG_CLK_DIV_SHIFT);
else if (clk_hz <= 40000000)
 config = (EMAC_CLK_DIV16 << EMAC_NCFG_CLK_DIV_SHIFT);
else if (clk_hz <= 80000000)
 config = (EMAC_CLK_DIV32 << EMAC_NCFG_CLK_DIV_SHIFT);
else
 config = (EMAC_CLK_DIV64 << EMAC_NCFG_CLK_DIV_SHIFT);
 __raw_writel(config, priv>regs + EMAC_NCFG);

Of course, in the remove() function, don't forget to disable and put
the clock.

Get the MAC address

The next initialization step is to get the MAC address from the
hardware, to tell the network stack about it. According to the
datasheet, the MAC address can be read from two registers:

#define EMAC_SA1B 0x98
#define EMAC_SA1T 0x9C

The first one contains the low 4 bytes, the second one contains the
top 2 bytes, forming the 6 bytes MAC address.

Write a function that:

• reads the MAC address (using __raw_readl)

• initialize a 6 bytes array with the MAC address

• test if this MAC address is valid using the
is_valid_ether_addr() function provided by the kernel. If
the address is valid, copy it to the dev_addr field of the
net_device structure. If the address is not valid, generate a
random network address into the same dev_addr field using
the random_ether_addr() function, also provided by the
kernel.

Now, in the probe() function, call your MAC address reading
function. After returning from the function, you can add a printk()
message to print the MAC address from the dev_addr field of the
net_device structure. Compile and test your module to see if it
works.

6

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

Access to the PHY through the MDIO bus

The next step is to enable the connection between the Ethernet
controller and the PHY. This takes place through the MDIO bus, for
which the kernel provides a framework. The MDIO infrastructure
will notify us of link state changes (cable connected or
disconnected, full or half duplex, 10 or 100 Mbit/s, etc.). In this
part, we'll just initialize the connection through this bus.

MDIO bus initialization

First, add a struct mii_bus pointer to your private structure
netdrv_device. Then, implement a netdrv_mii_init() function,
that performs the following steps:

• Enable the management port at a hardware level (which is
used to access the MDIO bus). This is done by setting the MPE
bit in the NCR register. Add the necessary #define to your
driver, and use __raw_writel() to enable this management
port.

• Allocate the struct mii_bus structure using
mdiobus_alloc()

• Initialize the different fields of the mii_bus structure

◦ name could be set to the “NETDRV_mii_bus” string

◦ read is a function pointer, so create an empty
netdrv_mdio_read() function with the correct prototype.
It will be used by the MDIO bus infrastructure to read
data from the bus

◦ write is similar, but for writing to the MDIO bus, so
create an empty netdrv_mdio_write() function with the
correct prototype

◦ Initialize the id field using
snprintf(mii_bus>id, MII_BUS_ID_SIZE, "%x",

netdrvdev>pdev>id);

◦ the priv pointer will be set so that it points to our struct
netdrv_device structure. It will be very useful to get
access to our private structure in the MDIO read() and
write() functions we defined before

◦ the irq field of the mii_bus structure must be allocated
and initialized in the following way to tell the MDIO
infrastructure that interrupts are not used between the
PHY and the Ethernet controller:
mii_bus>irq = kmalloc(sizeof(int)*PHY_MAX_ADDR,
 GFP_KERNEL);
for (i = 0; i < PHY_MAX_ADDR; i++)

mii_bus>irq[i] = PHY_POLL;

• Finally, register the mii_bus structure using
mdiobus_register(). The MDIO bus infrastructure will then
ask the PHY for its identifier, and find if a suitable PHY driver
is available (see drivers/net/phy for the available drivers).
As in our case, no specific PHY driver exists, the generic PHY
driver implemented in drivers/net/phy/phy_device.c will
be used.

7

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

MDIO bus access functions

Now, we have to implement the MDIO read and write functions.
Reading and writing to the MDIO bus takes place through the Phy
Maintenance Register (EMAC_MAN), while the IDLE bit of the
Network Status Register (EMAC_NSR) tells us whether the MDIO bus
is busy or not. So the read and write functions will be implemented
as follows:

static int netdrv_mdio_read(struct mii_bus *bus, int mii_id,
 int regnum)

{
 struct netdrv_device *netdrvdev = bus>priv;
 u32 out;

 out = (EMAC_MAN_SOF_VALUE << EMAC_MAN_SOF_SHIFT) |
 (EMAC_MAN_RW_READ << EMAC_MAN_RW_SHIFT) |
 (mii_id << EMAC_MAN_PHYA_SHIFT) |
 (regnum << EMAC_MAN_REGA_SHIFT) |
 (EMAC_MAN_CODE_VALUE << EMAC_MAN_CODE_SHIFT);

__raw_writel(out, netdrvdev>regs + EMAC_MAN);

 while(! (__raw_readl(netdrvdev>regs + EMAC_NSR) &
(1 << EMAC_NSR_IDLE_SHIFT))
cpu_relax();

return __raw_readl(netdrvdev>regs + EMAC_MAN) & 0xFFFF;
}

static int netdrv_mdio_write(struct mii_bus *bus, int mii_id,
 int regnum, u16 value)

{
 struct netdrv_device *netdrvdev = bus>priv;
 u32 out;

 out = (EMAC_MAN_SOF_VALUE << EMAC_MAN_SOF_SHIFT) |
 (EMAC_MAN_RW_WRITE << EMAC_MAN_RW_SHIFT) |
 (mii_id << EMAC_MAN_PHYA_SHIFT) |
 (regnum << EMAC_MAN_REGA_SHIFT) |
 (EMAC_MAN_CODE_VALUE << EMAC_MAN_CODE_SHIFT) |
 (value & 0xFFFF);

 __raw_writel(out, netdrvdev>regs + EMAC_MAN);

 while(! (__raw_readl(netdrvdev>regs + EMAC_NSR) &

(1 << EMAC_NSR_IDLE_SHIFT))
 cpu_relax();

 return 0;
}

Of course, you'll have to create all the definitions for the different
registers, according to the AT91SAM9263 specifications.

Main initialization

Finally, we have to use this new mechanism from the probe()
function of our driver. We'll first enable the clock and configure
whether we're using a RMII or a MII connection with the PHY
(through the EMAC_USRIO register), and then call our
netdrv_mii_init() function.

8

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

The selection between RMII or MII is done based on platform data.
These are data attached to a platform device, that are completely
specific to a given device. It allows the board definition file to
transmit detailed and custom information about the device to the
driver. In our case, the platform data is transmitted in the form of a
eth_platform_data structure, defined in arch/arm/mach
at91/boardusba9263.c.

To get these platform data, we'll do the following in the probe()
function (where pdev is the pointer to the platform_device
structure):

struct eth_platform_data *pdata;
pdata = pdev>dev.platform_data;

Now, we'll set bit CLKEN of register EMAC_USRIO, and optionally set
the RMII bit if the is_rmii field of the platform data is true. Refer
to the AT91SAM9263 datasheet for the registers and bits values,
and use __raw_writel() to write to the EMAC_USRIO register.

Finally, call the netdrv_mii_init() function.

Connecting the PHY and getting link change
notifications

Now that the MDIO bus is initialized, we'll be able to actually
connect the PHY. This will allow us to register a callback that will
get called when something changes: link goes up or down,
switching from half to full duplex, speed changing from 10 to 100
Mbit/s, etc.

First, let's add a struct phy_device to our private data structure.
We'll also add fields to store the current speed and duplex status:

struct phy_device *phydev;
unsigned int speed;
unsigned int duplex;

This will point to the PHY we're using. Then, we'll implement a
netdrv_mii_probe() function. The first step is to scan the detected
PHYs to get the phy_device of our PHY:

for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
if (netdrvdev>mii_bus>phy_map[phy_addr]) {

phydev = netdrvdev>mii_bus>phy_map[phy_addr];
break;

}
}

if (! phydev)
return 1;

Now, we will connect the PHY to our Ethernet controller using
phy_connect(), and set pass a netdrv_handle_link_change()
callback that will be called when the link status changes.

pdata = netdrvdev>pdev>dev.platform_data;
if (pdata && pdata>is_rmii) {

phydev = phy_connect(netdrvdev>dev,
 dev_name(&phydev>dev),
 &netdrv_handle_link_change,
 0, PHY_INTERFACE_MODE_RMII);

9

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

} else {
phydev = phy_connect(netdrvdev>dev,

 dev_name(&phydev>dev),
 &netdrv_handle_link_change,
 0, PHY_INTERFACE_MODE_MII);

}
if (! phydev)

return 1;

Finally, we will set the list of supported and advertised features of
our PHY to the basic features, and initialize the phydev, speed and
duplex fields of our private structure to sane values:

phydev>supported &= PHY_BASIC_FEATURES;
phydev>advertising = phydev>supported;
priv>speed = 0;
priv>duplex = 1;
priv>phydev = phydev;

Our function is now done. Don't forget to call it from
netdrv_mii_init() !

The last step is to implement the netdrv_handle_link_change()
callback. This function will look at the phydev>link, phydev
>speed and phydev>duplex values, and update accordingly the FD
(Full-Duplex) and SPD (Speed) bits of the Network Configuration
Register (NCFGR).

First case to handle, when the link is up, we check if phydev
>speed and phydev>duplex are different from the one we saved in
our private structure. If yes, then we update the NCFGR register, and
save the new values in our private structure:

if (phydev>link) {
if ((priv>speed != phydev>speed) ||
 (priv>duplex != phydev>duplex)) {

u32 reg;

reg = __raw_readl(priv>regs + EMAC_NCFGR);

reg &= ~((1 << EMAC_NCFGR_SPD_SHIFT) |
 (1 << EMAC_NCFGR_FD_SHIFT));

if (phydev>duplex)
reg |= (1 << EMAC_NCFGR_FD_SHIFT);

if (phydev>speed == SPEED_100)
reg |= (1 << EMAC_NCFGR_SPD_SHIFT);

__raw_writel(reg, priv>regs + EMAC_NCFGR);

priv>speed = phydev>speed;
priv>duplex = phydev>duplex;

}
}

The next case to handle is when the link goes down. Here we
simply reset the speed and duplex field of our private data
structures, so that next time the link goes up, they have sane
default values:

else {
priv>speed = 0;
priv>duplex = 1;

}

10

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

DMA buffers allocation, initialization and cleanup

We'll continue our work on the network driver by writing three
auxiliary functions that we will use later:

• netdrv_alloc_consistent(), to allocate the DMA buffers

• netdrv_free_consistent(), to free the DMA buffers

• netdrv_init_rings(), to initialize the DMA rings

First, have a read of section 41.3.2 of the AT91SAM9263 datasheet.
It explains how DMA works with the Ethernet controller.

Basically, we need two rings of DMA buffer descriptors, one for the
reception buffers and one for the transmission buffers. These
descriptors are 8 bytes long, with 4 bytes for the address of the
DMA buffer, and 4 bytes for various control flags. So let's define a
structure for these descriptors:

struct dma_desc {
 u32 addr;
 u32 ctrl;
};

For the reception, we also need to allocate the DMA buffers
themselves. According to the datasheet, their size is 128 bytes,
therefore we define

#define RX_BUFFER_SIZE 128

We will arbitrarily decide that our reception ring contains 512 DMA
buffers (and descriptors !), so let's define

#define RX_RING_SIZE 512

Therefore, the memory size to allocate for the reception DMA
descriptors is

#define RX_RING_BYTES (sizeof(struct dma_desc) * RX_RING_SIZE)

Now, for the transmission, the buffers will be allocated by the
kernel, since there are filled by userspace applications with the
payload. For transmission, we will have 128 DMA descriptors, so
let's define that and compute the amount of memory needed to
store these descriptors:

#define TX_RING_SIZE 128
#define TX_RING_BYTES (sizeof(struct dma_desc) * TX_RING_SIZE)

In addition to the DMA descriptors required by the hardware, we
will also need to keep track of which packet is being transmitted
through a given DMA descriptor, and where it is mapped in DMA
memory. So, we define another structure, struct ring_info,
which is not hardware-related, and is only used internally by our
driver. We will later allocate TX_RING_SIZE elements of this
structure:

struct ring_info {
 struct sk_buff *skb;
 dma_addr_t mapping;
};

The struct sk_buffer is a pointer to the packet being transmitted,
while the dma_addr_t is the DMA address at which the packet
contents were mapped prior to the beginning of the transmission.

11

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

We also need a few additional fields in our private structure, struct
netdrv_device:

• struct dma_descs *rx_ring, which will contain the ring of
reception DMA descriptors

• void *rx_buffers, which will contain the reception buffers
themselves

• struct dma_desc *tx_ring, which will contain the ring of
transmission DMA descriptors

• struct ring_info *tx_skb, which will contain the array of
struct ring_info used to keep track of transmission DMA
descriptors

• dma_addr_t rx_ring_dma, the DMA address of the reception
ring (DMA addresses might be different from CPU addresses)

• dma_addr_t tx_ring_dma, the DMA address of the
transmission ring

• dma_addr_t rx_buffers_dma, the DMA address of the
reception buffers

• three unsigned integers, rx_tail, tx_head and tx_tail, that
will be used to keep track of the consumption of the two rings
of DMA descriptors

Now that the data structures are in place, let's create the allocation
function, netdrv_alloc_consistent(). We will do four allocations:

1. Allocation of the array of struct ring_info, which can be
done with normal memory allocation (kmalloc) since these
informations are not going to be used by the Ethernet
controller

2. Allocation of the reception DMA descriptors. Since they are
shared with the Ethernet hardware, they must be allocated in
a coherent way with dma_alloc_coherent().

3. Allocation of the transmission DMA descriptors. Same as the
reception DMA descriptors.

4. Allocation of the reception buffers. Same as the reception
DMA descriptors.

Write the netdrv_alloc_consistent() function, and make it fill
the tx_skb, tx_ring, rx_ring, rx_buffers, rx_ring_dma,
tx_ring_dma, rx_buffers_dma members of our private structure
netdrv_device. Make sure you get the error handling correct.

Similarly, write the netdrv_free_consistent() function that does
the opposite, using kfree() and dma_free_coherent().

Finally, we'll write a netdrv_init_rings() function to initialize the
two rings, according to the datasheet specification.

For the reception ring, we'll initialize each descriptor with the
address of the corresponding reception buffer. The last descriptor
will have the WRAP bit of the addr field set, to indicate it is the last
descriptor:

addr = priv>rx_buffers_dma;
for (i = 0; i < RX_RING_SIZE; i++) {
 priv>rx_ring[i].addr = addr;

12

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

 priv>rx_ring[i].ctrl = 0;
addr += RX_BUFFER_SIZE;

}
priv>rx_ring[RX_RING_SIZE 1].addr |=

(1 << EMAC_DMA_RX_WRAP_SHIFT);

For the transmission ring, we'll initialize all addresses to zero
(since we don't yet have packets to transmit!), and we will set the
USED bit in the ctrl field to indicate that these descriptors are
owned by the CPU and not the Ethernet controller. Similarly to
reception descriptors, the last transmission descriptor will have its
WRAP bit set to indicate it's the last. Be careful, in reception
descriptors, this bit is part of the addr field while for transmission
descriptors, it is part of the ctrl field.

for (i = 0; i < TX_RING_SIZE; i++) {
priv>tx_ring[i].addr = 0;
priv>tx_ring[i].ctrl = (1 << EMAC_DMA_TX_USED_SHIFT);

}
priv>tx_ring[TX_RING_SIZE 1].ctrl |=

(1 << EMAC_DMA_TX_WRAP_SHIFT);

Finally, reset the tx_head, tx_tail and rx_tail fields:

priv>rx_tail = priv>tx_head = priv>tx_tail = 0;

Hardware reset and initialization

Obviously, to do hardware initialization, we need a set of register
addresses definitions:

• The transmit status register (TSR)
#define EMAC_TSR 0x14

• The receive buffer queue pointer (RBQP)
#define EMAC_RBQP 0x18

• The transmit buffer queue pointer (TBQP)
#define EMAC_TBQP 0x1C

• The reception status register (RSR)
#define EMAC_RSR 0x20

• The interrupt status register (ISR)
#define EMAC_ISR 0x24

• The interrupt enable register (IER)
#define EMAC_IER 0x28

• The interrupt disable register (IDR)
#define EMAC_IDR 0x2C

In addition to these, bit definitions are needed:

• For the Network Configuration Register (NCR), we need the
bits to enable transmission and reception
#define EMAC_NCR_RE_SHIFT 2
#define EMAC_NCR_TE_SHIFT 3

• For the interrupt enable register (IER), we need the bits to
enable interrupts on transmission and reception completion
#define EMAC_IER_RCOMP_SHIFT 1
#define EMAC_IER_TCOMP_SHIFT 7

Now, write a netdrv_reset_hw() function that:

13

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

• Set all bits to one in the Transmit Status Register

• Set all bits to one in the Reception Status Registered

• Set all bits to one in the Interrupt Disable Register

• Read the Interrupt Status Register to clear any pending
interrupt

And write a netdrv_init_hw() function that:

• Calls netdrv_reset_hw()

• Sets the correct values in the Transmit Buffer Queue Pointer
and Reception Buffer Queue Pointer registers

• Enable reception and transmission in the Network
Configuration Register

• Enable the transmission and reception completion interrupts
in the Interrupt Enable register

Of course, these functions will be used later.

Implement open and close operations

These operations are respectively called when the network
interface is enabled and disabled, for example using ifconfig from
userspace.

First, create two empty functions, netdrv_open() and
netdrv_close(). Both functions return an integer value and take
as argument a struct net_device pointer. Then, register these
operations in the net_device_ops structure previously created,
under the ndo_open and ndo_close fields:

 .ndo_open = netdrv_open,
 .ndo_stop = netdrv_close,

Now, let's implement these functions. In the netdrv_open()
function, we need to:

• Allocate the DMA buffers using netdrv_alloc_consistent()

• Initialize the DMA buffers using netdrv_init_rings()

• Initialize the hardware using netdrv_init_hw()

• Start the PHY using phy_start() on the PHY device that
we've previously stored in our private data structure. This
phy_start() function will start polling the PHY regularly to
detect link changes

• Call netif_start_queue() to tell the kernel that our
interface is ready to operate packets

Symmetrically, in the netdrv_close() function:

• Call netif_stop_queue() to tell the kernel that our interface
no longer accepts packets

• Stop the PHY using phy_stop()

• Reset the hardware using netdrv_reset_hw() so that
interupts are disabled, etc.

• Free the DMA buffers using netdrv_free_consistent()

14

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

Introduce locking

Until now, our driver does not implement proper locking, which
might lead to incorrect concurrent access to shared resources.
Therefore, we must implement locking. In this driver, a single
spinlock will be used, since the concurrent accesses that must be
prevented occur between the interrupt handler and the process
context code.

Therefore, add a spinlock_t structure to our private data
structure, and initialize this spinlock with spin_lock_init() in the
probe() method.

Then, we must use this spinlock in:

• netdrv_handle_link_change(), with spin_lock_irqsave()
and spin_unlock_irqrestore() to prevent concurrency
between the execution of this function and the interrupt
handler

• netdrv_close(), again with spin_lock_irqsave() and
spin_lock_irqrestore() to prevent concurrency between
interrupts and the operation of stopping the network
interface. This must be done after stopping the queue and the
PHY.

Implement transmission

Definitions

Before implementing the transmission function themselves, let's
start by adding the usual definitions:

• The TSTART bit of the Network Configuration Register, used
to start the transmission of the packets stored in the
Transmission Queue
#define EMAC_NCR_TSTART_SHIFT 9

• The transmission completion bit of the Transmit Status
Register
#define EMAC_TSR_COMP_SHIFT 5

• The bit of the transmission DMA descriptor that tells if the
current descriptor is the last buffer of the current frame. In
our case, this bit will be set of all transmission DMA
descriptors since we will always send a packet in a single
DMA buffer
#define EMAC_DMA_TX_LAST_SHIFT 15

• A macro that tells how many DMA buffers are currently
available (free) in the queue
#define TX_BUFFS_AVAIL(priv) \
(((priv)>tx_tail <= (priv)>tx_head) ? \
(priv)>tx_tail + TX_RING_SIZE 1 (priv)>tx_head: \
(priv)>tx_tail (priv)>tx_head 1)

• A macro that given an index in the queue of DMA
transmission buffers, returns the index of the next one
#define NEXT_TX(n) (((n) + 1) & (TX_RING_SIZE 1))

The transmission entry point

The entry point of our driver for the transmission of packets is the

15

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

int ndo_start_xmit(struct sk_buff *, struct net_device *)
operation. So, create an empty netdrv_start_xmit() function and
register it in the net_device_ops structure.

The code of the netdrv_start_xmit() function will manipulate the
queue of DMA buffer descriptors and this queue will also be
modified by the interrupt handler. Therefore, locking must be used.
As the start_xmit() function is guaranteed never to be called from
an interrupt handler, we can directly use spin_lock_irq() and
spin_unlock_irq().

Once the lock is taken, the first thing to check is if we have at least
one remaining DMA buffer descriptor available to send the packet
(using the TX_BUFFS_AVAIL macro) If not, this is really a problem
since we are supposed to manage this queue and tell the kernel to
stop sending packets when the queue is full. Therefore, if this
happens, stop the queue with netif_stop_queue(), release the
spinlock and return 1 (which the kernel will interpret as an error).

If we have at least one DMA buffer descriptor available, the next
available is the one pointed by tx_head in our private data
structure.

The next step is to map the packet so that it can be send through
DMA (we are using « streaming DMA »). It takes place using the
dma_map_single() function, which takes as argument a struct
device pointer (can be found from our private data structure), the
memory area to be mapped (the pointer to the packet data is skb
>data), the length (skb>length) and the direction of the DMA
transfer (in our case a transmission to the device, so
DMA_TO_DEVICE). The function returns a DMA address, of the type
dma_addr_t. This is the address we must give to our device.

Then, update our internal tx_skb array with the DMA address and
the pointer to the SKB. This will be useful at the completion of the
transmission.

Now, let's compute the value of the ctrl field of the DMA buffer
descriptor:

• It must contain the length of the data to transmit, skb->len

• The EMAC_DMA_TX_LAST_SHIFT bit must be set, as all our
packets are sent through a single buffer

• If the buffer we're using is the last one of the queue (tx_head
is equal to TX_RING_SIZE - 1), then the
EMAC_DMA_TX_WRAP_SHIFT bit must be set

Then, initialize the addr field of the DMA buffer descriptor with the
DMA address, and the ctrl field with the value computed
previously. To prevent the reordering of these writes with the write
that will start the transmission, add a write memory barrier after
the setup of the DMA buffer descriptor.

Then, update the tx_head to the next available transmission buffer
so that further calls to start_xmit() will use another buffer (hint:
use the NEXT_TX macro).

Finally, start the transmission by setting the
EMAC_NCR_TSTART_SHIFT bit of the Network Configuration
Register. Be careful not to change the value of other bits in this
register !

16

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

Before the end of the function, we must tell the kernel if we still
have DMA buffer descriptors available to accept new packets. Test
the number of DMA buffer descriptors available, and call
netif_stop_queue() if needed.

Transmission completion

The completion of the transmission will of course be notified by an
interrupt. So, when an interrupt is raised, we will check if it's due
to a transmission completion, and if so, we will unmap the DMA
buffer, mark it as available, and potentially signal the kernel that
we are ready again to send more packets.

So, the first part takes place in the interrupt handler,
netdrv_interrupt(). First, we need to test if the interrupt really
originates from our device. To do so, read the EMAC_ISR (Interrupt
Status Register), and if it's 0 (no interrupt pending), then simply
return IRQ_NONE to the kernel.

Otherwise, take our spinlock, so that the execution of the code of
our interrupt handler is protected against concurrent access. Using
the spin_lock() and spin_unlock() variant is sufficient, since our
interrupt is already guaranteed to be disabled.

Then, we have to loop until the EMAC_ISR register is 0. This
register gets reset to 0 when it's read, so there's no need to reset
bits manually in it. However, this also mean that you must save and
use the value of the register as it was in the first test at the
beginning of the interrupt handler.

In the loop, test if the bit EMAC_IER_TCOMP_SHIFT bit is set, which
notifies a transmission completion. If so, call a new netdrv_tx()
function that will take care of finishing the transmission process.

Now, let's implement the netdrv_tx() function. This function should:

• Verify in the Transmit Status Register that a transmission
completion occurred. To do so, one must

◦ Read the EMAC_TSR register

◦ Write the read value into the EMAC_TSR register to clear
the bits (according to the controller specification, writing
with a bit set actually clears the bit in the register)

◦ Test if the EMAC_TSR_COMP_SHIFT bit is set, and if not,
return

• Test all DMA buffer descriptors (in a loop), for the tail
(pointed by tx_tail) to the head (pointed by tx_head).
Remember to use NEXT_TX() to compute the index of the next
DMA buffer descriptor in the queue. For each descriptor, we
will:

◦ Use a read memory barrier to make sure that what we will
actually read is what has been set by the device into the
DMA descriptor

◦ Test the EMAC_DMA_TX_USED_SHIFT bit. If it isn't set, then
we have to stop the loop over the DMA descriptors, since
it means that we reached a DMA descriptor whose
transmission hasn't been completed by the controller

◦ Unmap the SKB using dma_unmap_single()

17

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

◦ Free the SKB using dev_kfree_skb_irq()

◦ Reset the SKB pointer in our private tx_skb[] array.

• At the end of the loop, update tx_tail so that it points to the
DMA descriptor to be analyzed at the next transmission
completion interrupt.

• Finally, if the queue was stopped (which can be tested using
netif_queue_stopped()) and if we have enough transmit
buffers available (say 32), then tell then kernel to start
sending packets again using netif_wake_queue().

With this transmission infrastructure in place, your system should
be able to send packets. You can test with Wireshark on your host
PC, and try to ping the host PC from the target. Ping will not work
of course (due to the lack of reception support), but Wireshark
should see ARP requests coming from the target.

Implement reception

The last (but not least!) part of our driver is obviously to implement
the reception support.

The reception of packets is notified through an interrupt, so in the
interrupt handler, we'll add a call to a netdrv_rx() function. This
function will go through the list of DMA descriptors, and find the
ranges of DMA descriptors that correspond to a packet. For each of
these ranges, a netdrv_rx_frame() function will be called to handle
the reception of a packet. Here, we have a difference between
transmission and reception: on the transmission side, eack packet
is completely sent through a single DMA buffer and descriptor,
while on the reception side, DMA buffers are limited to 128 bytes,
so multiple reception DMA buffers are usually needed to store the
contents of a network packet.

Definitions

As usual, additional definitions are needed:

• Bit definitions for the DMA reception descriptors

◦ #define EMAC_DMA_RX_USED_SHIFT 0
This bit is set to one in the address field of the DMA
descriptor by the device when the DMA buffer has been
filled with data

◦ #define EMAC_DMA_RX_SOF_SHIFT 14
This bit is set to one in the control field of the DMA
descriptor by the device when the data in this DMA buffer
is the beginning of a network packet (SOF stands for Start
of Frame)

◦ #define EMAC_DMA_RX_EOF_SHIFT 15
This bit is set to one in the control field of the DMA
descriptor by the device when the data in this DMA buffer
is the end of a network packet (EOF stands for End of
Frame)

• As the Ethernet header is 14 bytes in size and for
performance reasons, it's better to have the IP header word-
aligned, many Ethernet drivers allocates two additional bytes
in each packet and shift by two bytes the Ethernet header. So

18

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

we define a constant RX_OFFSET:
#define RX_OFFSET 2

• A macro NEXT_RX(), implemented just like NEXT_TX() except
that it wraps at RX_RING_SIZE instead of TX_RING_SIZE.

In the interrupt handler

The work in the interrupt handler is simple: after the test for the
transmission completion, add a similar test on the
EMAC_IER_RCOMP_SHIFT bit, and if this bit is set, call netdrv_rx().

The netdrv_rx() function

In this function, loop over the DMA descriptors starting at the
reception tail (rx_tail), and so the following things:

• Call rmb() to make sure that what you're reading from the
DMA descriptors will be correct

• If the EMAC_DMA_RX_USED_SHIFT bit in the address field of the
current DMA descriptor isn't set, then we have reached the
last received DMA buffer, and we can break out of the loop

• If the EMAC_DMA_RX_SOF_SHIFT bit in the control field of the
current DMA descriptor is set, then the current DMA buffer is
the beginning of a new packet. Store the index of the current
DMA descriptor in a variable, so that we remember what is
the first DMA buffer of the current packet

• If the EMAC_DMA_RX_EOF_SHIFT bit in the control field of the
current DMA descriptor is set, then the current DMA buffer is
the end of the current packet. So now, we have the index of
the beginning of the packet (saved previously) and the index
of the end of the packet. With these two informations, we call
our netdrv_rx_frame() function to handle the reception of a
complete packet

After the loop, remember to update the rx_tail properly.

The netdrv_rx_frame() function

This function is in charge of allocating an SKB from the network
stack, filling it with the packet data, and submitting the SKB for
analysis to the network stack.

At the beginning of the function, let's compute the length of the
received packet. This length is store in the 11 low-order bits of the
control field of the last DMA descriptor containing the packet.

Then, we ask the kernel to allocate a SKB for us, using
dev_alloc_skb(). This function takes a length as argument, which
must be the length of the received packet plus the RX_OFFSET used
to make sure the IP header will be word-aligned. Of course, check
that the allocation was successful. If it isn't, the packet is simply
dropped, but don't forget to mark the DMA descriptors of the
packet as unused by clearing the EMAC_DMA_RX_USED_SHIFT bit of
the address field.

Then, we need to set-up the SKB:

• tell the kernel that the first two bytes of the packets are to be
ignored using skb_reserve(skb, RX_OFFSET).

19

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2009 Free Electrons, http://free-electrons.com Creative Commons License© 2009 Free Electrons, http://free-electrons.com Creative Commons License

• Tell the kernel that our device didn't do any verification of the
packet checksums (some devices do this directly in
hardware). This is done using skb>ip_summed =
CHECKSUM_NONE.

• Tell the kernel how much data we will put in our SKB using
skb_put() with the packet length as argument

Once our SKB is setup, let's go through the different DMA buffers
that contain the data of our packet and handle them in a loop that
does:

• Computes the length of the data available in the current DMA
buffer. Usually it's the size of the buffer, RX_BUFFER_SIZE,
except for the last one !

• Copy data from the DMA buffer to the SKB, using
skb_copy_to_linear_data_offset(). The arguments of this
function are: the SKB pointer, the offset in the SKB at which
the data should be copied, the location from which the data
should be taken, and the length of the data to copy

• Clear the EMAC_DMA_RX_USED_SHIFT bit in the DMA
descriptor, to mark the corresponding DMA buffer as
available again for future receptions

At the end of the function, we must compute the protocol of the
packet that has been received and store it in the SKB: skb
>protocol = eth_type_trans(skb, priv>dev).

And finally, submit the received packet to the kernel using
netif_rx().

Now, your driver should be working, and network traffic should go
back and forth between the target and the rest of the world.
Congratulations!

Improvements

Compared to the official driver for this Ethernet controller as
available in the kernel, our driver lacks a few features:

• No support for NAPI, which allows to limit the interrupt rate
when the network traffic increases significantly

• No support for the ethtool API, which allows userspace
applications to get informations about the status of the link
and to configure a few settings

• No support for the statistics (packets received/sent, bytes
received/sent, errors, etc.)

• No support for promiscuous mode and for the multicast filters

• No proper management of errors communicated by the
Ethernet controller

20

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/

