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Kernel – Network device driver programming

Objective: Develop a network device driver for the 
AT91SAM9263 CPU from scratch.

Warning

In this lab, we are going to re-implement a driver that already 
exists in the Linux kernel tree. Since the driver already exists, you 
could just copy the code, compile it, and get it to work in a few 
minutes. However, the purpose of this lab is to re-create this driver 
from scratch, taking the time to understand all the code and all the 
steps. So please play the game, and follow our adventure of 
creating a network driver from scratch !

Setup

Go to the /home/<user>/felabs/linux/networking directory. It 
contains:

• rootfs.jffs2, the JFFS2 image of a root filesystem, 
containing the necessary tools to load and test the network 
device driver. Obviously, since we are going to re-develop the 
network driver, we cannot use NFS to mount our root 
filesystem during development!

• module/, containing a skeleton of a kernel module

The datasheet of the device is available at http://www.free-
electrons.com/labs/at91sam9263-manual.pdf.

We'll need a special kernel for this lab because we need to remove 
the official network driver of the Calao board. Follow these steps to 
configure and compile the kernel:

• Grab the tarball of a recent kernel

• Modify the Makefile with ARCH=arm and adjust 
CROSS_COMPILE to your cross-compiler

• Run make usba9263_defconfig to load the default 
configuration for the Calao board

• Run make xconfig or make menuconfig, and in the 
configuration utility, go to «Device Drivers»  → «Network 
device support» → «10/100 Mbit/s devices» and disable the 
«Atmel MACB support».

Now, boot the board in U-Boot, transfer and flash the kernel and 
root filesystem to the board, and adjust the bootargs parameter to 
mount the root filesystem from flash. In U-Boot:

• nand erase 0 200000

• tftp 21000000 uImage

• nand write 21000000 0 200000

• nand erase 200000 400000

• tftp 21000000 rootfs.jffs2

• nand write 21000000 200000 ${filesize}
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• setenv bootcmd nboot 21000000

• setenv autostart yes

• setenv bootargs 
mtdparts=atmel_nand:2m(kernel)ro,3m(rootfs)rw 
root=/dev/mtdblock1 rootfstype=jffs2

• saveenv

Reboot your board, and see your kernel booting, mounting your 
root filesystem and starting the userspace applications.

Testing the kernel module

Before we actually start developing the kernel driver, let's make 
sure we can properly compile and test a simple kernel module. The 
module/ directory in the current lab directory contains such a 
simple kernel module. Start by adjusting the Makefile so that it 
points to the location of your kernel sources, then compile the 
module.

As we cannot transfer the module through the network, we'll use 
the serial port to do so. Here's the procedure to do so:

• From Minicom, on the target, run the “rz” command (which is 
a shortcut for « receive zmodem »). A few strange characters 
will be displayed

• Then, again from Minicom, press “Ctrla s”, which is the 
shortcut for the command to send files. A small dialog should 
pop-up to select the transfer protocol, select zmodem.

• A new dialog box prompting for the file to transfer will show 
up. Navigate to transfer the .ko file of your new kernel 
module.

• At the end of the transfer, the “rz” command on the target 
should be terminated. You can now insert and remove your 
module from the kernel as usual, with insmod and rmmod.

Note: make sure to remove the .ko file from the target before 
transferring a new version of the module. The “rz” command 
doesn't overwrite existing files.

Registering a network interface

Obviously, the first and simplest step, is to register a network 
interface in the module initialization function, and to remove in the 
module cleanup function.

In the initialization function, use alloc_etherdev() to create a 
net_device structure, set its netdev_ops member to an empty 
net_device_ops structure, and register the interface using 
register_netdev(). In the cleanup function, use 
unregister_netdev() and free_netdev() to remove the interface 
and free the memory. If you load this module, a new eth0 network 
interface should appear in the target system.

Integration in the driver model

With the driver model, devices are not registered in the module 
initialization function. Rather, the module registers a PCI driver, a 
platform driver, a USB driver, etc. at initialization time, and the 
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driver model infrastructure will call a probe() method when a 
device handled by our driver is detected.

So, let's integrate our driver in this kernel framework:

• Define a platform_driver structure, set the remove and 
probe members so that they point to two new functions with 
the proper prototype, and define the driver members to the 
following substructure:
.driver = {
 .name = “macb”,
 .owner = THIS_MODULE,
}

• In the module initialization function, remove the existing code 
register the platform driver with 
platform_driver_register()

• In the module cleanup function, remove the existing code and 
call platform_driver_unregister().

• Implement the netdrv_probe() function. It must do the same 
as the previous initialization function (alloc_etherdev() and 
register_netdev()), but must also

◦ Connect the network device (struct net_device) to the 
underlying platform device. This is done using
SET_NETDEV_DEV(dev, & pdev>dev)
where dev is the struct net_device representing the 
network interface, and pdev the platform device passed as 
argument to the probe() method

◦ Set the platform device driver data pointer to the network 
device, using
platform_set_drvdata(pdev, dev)
Both these calls allows to have cross-references between 
the structure representing the network interface (high-
level) and the structure representing the platform device 
(low-level)

• Implement the netdrv_remove() function. It must do the 
same as the previous module cleanup function. This function 
receives as argument a platform_device pointer, and not the 
struct net_device pointer. So how do we get the struct 
net_device pointer? By using the platform device driver data, 
that we set in the probe() function:
struct net_device *dev = platform_get_drvdata(pdev)
After unregistering the network device 
(unregister_netdev()), reset the platform device driver data 
using platform_set_drvdata(pdev, NULL) and free the 
network device structure (free_netdev()).

Once everything is implemented, compile your module, transfer it 
to the target and load it. Does the eth0 interface appear as it used 
to do? It shouldn't! Let's see why in the next section.

Enabling the platform device

A platform device is statically defined in the kernel source code, 
more precisely in the board definition file. In our case, the board 
definition file is arch/arm/machat91/boardusba9263.c. To 
initialize the Ethernet controller, this file calls 
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ek_add_device_eth() which is defined in arch/arm/mach
at91/at91sam9263_devices.c (many boards use the same 
AT91SAM9263 and therefore they share a lot of code).

This function ek_add_device_eth() only does something if 
CONFIG_MACB or CONFIG_MACB_MODULE are defined (these are 
defined when the official driver is compiled). Since we disabled the 
official driver to compile our own, the ek_add_device_eth() 
function is empty in our kernel, so that the 
platform_device_register() for the Ethernet controller is never 
called. As a workaround, change the line

#if defined(CONFIG_MACB) ||defined(CONFIG_MACB_MODULE)

by

#if 1

and then recompile and reflash the kernel on the board.

Of course, for a real driver integrated into the kernel tree, we 
would use the same mechanism as the one used for the official 
driver.

Mapping the I/O registers

Obviously, to access the I/O registers of the network card, we need 
to map them into memory, using the ioremap() function. But prior 
to doing that, we are at a point in the development of our driver 
where we will need to store private information about the network 
device: for now, the virtual address at which the I/O registers have 
been remapped (later, other private informations will be stored).

So first, let's create a structure contain the private data, holding a 
single member, pointer to the I/O registers:

struct netdrv_device 
{ 
        void __iomem *regs; 
}; 

Then, in the probe() function, change the call to 
alloc_etherdev(0) to alloc_etherdev(sizeof(struct 
netdrv_device)). The kernel will automatically allocate the 
memory needed to store the private data. Then, at anytime in the 
driver code, you can use netdev_priv() on a struct net_device 
to get a pointer to the private structure. This area of memory will 
be automatically freed by free_netdev(), so no special change is 
required in the remove() function.

Now, let's do the mapping of the I/O registers itself. In the probe() 
function:

• Use platform_get_resource() to get the physical address of 
the I/O registers from the board definition file (see 
arch/arm/machat91/at91sam9263_devices.c for the list of 
resources for this device). This function returns a pointer to a 
struct resource, which contains two interesting fields: 
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start and end (both are physical addresses)

• Call ioremap() to remap the memory area returned by 
platform_get_resource(). The returned value, a virtual 
address, should be stored in the private structure that we 
allocated previously.

Of course, don't forget to do the error checking!

Finally, in the remove() function, call iounmap() at the proper 
location to remove the memory mapping.

Now, to make it easier to develop the rest of the driver, we'll add 
two more fields to our private struct netdrv_device:

• struct net_device *dev;

• struct platform_device *pdev;

And in the probe() function, we initialize them respectively to the 
net_device pointer and the platform_device pointer. This way, in 
the rest of the driver, we can just pass a struct netdrv_device 
pointer to sub-functions, and they will be able to access the other 
pieces of information.

Registering the IRQ

Registering the IRQ is very similar to mapping the I/O registers. In 
the probe() function:

• Call platform_get_irq() to get the IRQ number of the 
Ethernet controller. It should be stored in the irq field of the 
net_device structure (as the net_device structure contains 
such a field, there's no point in storing the IRQ number in our 
private structure, as we did for the I/O registers virtual 
address).

• Call request_irq() to register this IRQ number. This will 
involve the creation of an interrupt handler. Just make it 
return IRQ_NONE for the moment.

In the remove() function, don't forget to unregister the IRQ using 
free_irq().

Configuring and enabling the clock

To configure the clock on the device, we'll first need some 
definitions of register address and values. So, take the 
AT91SAM9263 datasheet, chapter 41, about the EMAC Ethernet 
controller. More specifically, the part 41.5, describing all the 
registers, will be particularly useful in our case.

The clock configuration takes place in the Network Configuration 
Register, EMAC_NCFG, so let's do:

#define EMAC_NCFG 0x4

Four values for the clock divider are possible, let's add defines for 
them:

#define EMAC_CLK_DIV8  0 
#define EMAC_CLK_DIV16 1 
#define EMAC_CLK_DIV32 2 
#define EMAC_CLK_DIV64 3 
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And the clock divider is defined at bit 10 and 11 is the NCFG 
register, so let's add a define for this:

#define EMAC_NFCG_CLK_DIV_SHIFT 10

Now, in the probe() function, we'll use the clock API of the kernel. 
Remember, the clock API is just clk_get()/clk_put(), 
clk_enable()/clk_disable() and clk_get_rate(). So, in the 
probe() function, we'll get and enable the “macb_clk” clock. The 
clocks are defined statically in arch/arm/mach
at91/at91sam9263.c. The struct clk pointer returned by 
clk_get() will be stored in the private structure struct 
netdrv_device.

Once the clock has been get and enabled, we need to adjust the 
divider of the Ethernet controller, according to the datasheet of the 
CPU:

clk_hz = clk_get_rate(priv>clk); 
if (clk_hz <= 20000000) 
  config = (EMAC_CLK_DIV8 << EMAC_NCFG_CLK_DIV_SHIFT); 
else if (clk_hz <= 40000000) 
  config = (EMAC_CLK_DIV16 << EMAC_NCFG_CLK_DIV_SHIFT); 
else if (clk_hz <= 80000000) 
  config = (EMAC_CLK_DIV32 << EMAC_NCFG_CLK_DIV_SHIFT); 
else 
  config = (EMAC_CLK_DIV64 << EMAC_NCFG_CLK_DIV_SHIFT); 
 __raw_writel(config, priv>regs + EMAC_NCFG); 

Of course, in the remove() function, don't forget to disable and put 
the clock.

Get the MAC address

The next initialization step is to get the MAC address from the 
hardware, to tell the network stack about it. According to the 
datasheet, the MAC address can be read from two registers:

#define EMAC_SA1B 0x98 
#define EMAC_SA1T 0x9C 

The first one contains the low 4 bytes, the second one contains the 
top 2 bytes, forming the 6 bytes MAC address.

Write a function that:

• reads the MAC address (using __raw_readl)

• initialize a 6 bytes array with the MAC address

• test if this MAC address is valid using the 
is_valid_ether_addr() function provided by the kernel. If 
the address is valid, copy it to the dev_addr field of the 
net_device structure. If the address is not valid, generate a 
random network address into the same dev_addr field using 
the random_ether_addr() function, also provided by the 
kernel.

Now, in the probe() function, call your MAC address reading 
function. After returning from the function, you can add a printk() 
message to print the MAC address from the dev_addr field of the 
net_device structure. Compile and test your module to see if it 
works.
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Access to the PHY through the MDIO bus

The next step is to enable the connection between the Ethernet 
controller and the PHY. This takes place through the MDIO bus, for 
which the kernel provides a framework. The MDIO infrastructure 
will notify us of link state changes (cable connected or 
disconnected, full or half duplex, 10 or 100 Mbit/s, etc.). In this 
part, we'll just initialize the connection through this bus.

MDIO bus initialization

First, add a struct mii_bus pointer to your private structure 
netdrv_device. Then, implement a netdrv_mii_init() function, 
that performs the following steps:

• Enable the management port at a hardware level (which is 
used to access the MDIO bus). This is done by setting the MPE 
bit in the NCR register. Add the necessary #define to your 
driver, and use __raw_writel() to enable this management 
port.

• Allocate the struct mii_bus structure using 
mdiobus_alloc()

• Initialize the different fields of the mii_bus structure

◦ name could be set to the “NETDRV_mii_bus” string

◦ read is a function pointer, so create an empty 
netdrv_mdio_read() function with the correct prototype. 
It will be used by the MDIO bus infrastructure to read 
data from the bus

◦ write is similar, but for writing to the MDIO bus, so 
create an empty netdrv_mdio_write() function with the 
correct prototype

◦ Initialize the id field using
snprintf(mii_bus>id, MII_BUS_ID_SIZE, "%x",

netdrvdev>pdev>id);

◦ the priv pointer will be set so that it points to our struct 
netdrv_device structure. It will be very useful to get 
access to our private structure in the MDIO read() and 
write() functions we defined before

◦ the irq field of the mii_bus structure must be allocated 
and initialized in the following way to tell the MDIO 
infrastructure that interrupts are not used between the 
PHY and the Ethernet controller:
mii_bus>irq = kmalloc(sizeof(int)*PHY_MAX_ADDR,
  GFP_KERNEL);
for (i = 0; i < PHY_MAX_ADDR; i++) 

mii_bus>irq[i] = PHY_POLL; 

• Finally, register the mii_bus structure using 
mdiobus_register(). The MDIO bus infrastructure will then 
ask the PHY for its identifier, and find if a suitable PHY driver 
is available (see drivers/net/phy for the available drivers). 
As in our case, no specific PHY driver exists, the generic PHY 
driver implemented in drivers/net/phy/phy_device.c will 
be used.
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MDIO bus access functions

Now, we have to implement the MDIO read and write functions. 
Reading and writing to the MDIO bus takes place through the Phy 
Maintenance Register (EMAC_MAN), while the IDLE bit of the 
Network Status Register (EMAC_NSR) tells us whether the MDIO bus 
is busy or not. So the read and write functions will be implemented 
as follows:

static int netdrv_mdio_read(struct mii_bus *bus, int mii_id,
  int regnum) 

{ 
       struct netdrv_device *netdrvdev = bus>priv; 
       u32 out; 

       out = (EMAC_MAN_SOF_VALUE  << EMAC_MAN_SOF_SHIFT)  | 
             (EMAC_MAN_RW_READ    << EMAC_MAN_RW_SHIFT)   | 
             (mii_id              << EMAC_MAN_PHYA_SHIFT) | 
             (regnum              << EMAC_MAN_REGA_SHIFT) | 
             (EMAC_MAN_CODE_VALUE << EMAC_MAN_CODE_SHIFT); 

__raw_writel(out, netdrvdev>regs + EMAC_MAN); 

       while(! (__raw_readl(netdrvdev>regs + EMAC_NSR) &
(1 << EMAC_NSR_IDLE_SHIFT)) 
cpu_relax(); 

return __raw_readl(netdrvdev>regs + EMAC_MAN) & 0xFFFF; 
} 

static int netdrv_mdio_write(struct mii_bus *bus, int mii_id,
   int regnum, u16 value) 

{ 
       struct netdrv_device *netdrvdev = bus>priv; 
       u32 out; 

       out = (EMAC_MAN_SOF_VALUE  << EMAC_MAN_SOF_SHIFT)  | 
             (EMAC_MAN_RW_WRITE   << EMAC_MAN_RW_SHIFT)   | 
             (mii_id              << EMAC_MAN_PHYA_SHIFT) | 
             (regnum              << EMAC_MAN_REGA_SHIFT) | 
             (EMAC_MAN_CODE_VALUE << EMAC_MAN_CODE_SHIFT) | 
             (value               &  0xFFFF); 
 
       __raw_writel(out, netdrvdev>regs + EMAC_MAN); 
 
       while(! (__raw_readl(netdrvdev>regs + EMAC_NSR) &

(1 << EMAC_NSR_IDLE_SHIFT)) 
               cpu_relax(); 
 
       return 0; 
} 

Of course, you'll have to create all the definitions for the different 
registers, according to the AT91SAM9263 specifications.

Main initialization

Finally, we have to use this new mechanism from the probe() 
function of our driver. We'll first enable the clock and configure 
whether we're using a RMII or a MII connection with the PHY 
(through the EMAC_USRIO register), and then call our 
netdrv_mii_init() function.
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The selection between RMII or MII is done based on platform data. 
These are data attached to a platform device, that are completely 
specific to a given device. It allows the board definition file to 
transmit detailed and custom information about the device to the 
driver. In our case, the platform data is transmitted in the form of a 
eth_platform_data structure, defined in arch/arm/mach
at91/boardusba9263.c.

To get these platform data, we'll do the following in the probe() 
function (where pdev is the pointer to the platform_device 
structure):

struct eth_platform_data *pdata;
pdata = pdev>dev.platform_data;

Now, we'll set bit CLKEN of register EMAC_USRIO, and optionally set 
the RMII bit if the is_rmii field of the platform data is true. Refer 
to the AT91SAM9263 datasheet for the registers and bits values, 
and use __raw_writel() to write to the EMAC_USRIO register.

Finally, call the netdrv_mii_init() function.

Connecting the PHY and getting link change 
notifications

Now that the MDIO bus is initialized, we'll be able to actually 
connect the PHY. This will allow us to register a callback that will 
get called when something changes: link goes up or down, 
switching from half to full duplex, speed changing from 10 to 100 
Mbit/s, etc.

First, let's add a struct phy_device to our private data structure. 
We'll also add fields to store the current speed and duplex status:

struct phy_device *phydev;
unsigned int speed;
unsigned int duplex;

This will point to the PHY we're using. Then, we'll implement a 
netdrv_mii_probe() function. The first step is to scan the detected 
PHYs to get the phy_device of our PHY:

for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 
if (netdrvdev>mii_bus>phy_map[phy_addr]) { 

phydev = netdrvdev>mii_bus>phy_map[phy_addr]; 
break; 

} 
} 

if (! phydev)
return 1;

Now, we will connect the PHY to our Ethernet controller using 
phy_connect(), and set pass a netdrv_handle_link_change() 
callback that will be called when the link status changes.

pdata = netdrvdev>pdev>dev.platform_data; 
if (pdata && pdata>is_rmii) { 

phydev = phy_connect(netdrvdev>dev,
 dev_name(&phydev>dev), 
 &netdrv_handle_link_change, 
 0, PHY_INTERFACE_MODE_RMII); 
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} else { 
phydev = phy_connect(netdrvdev>dev,

 dev_name(&phydev>dev), 
 &netdrv_handle_link_change, 
 0, PHY_INTERFACE_MODE_MII); 

} 
if (! phydev) 

return 1; 

Finally, we will set the list of supported and advertised features of 
our PHY to the basic features, and initialize the phydev, speed and 
duplex fields of our private structure to sane values:

phydev>supported &= PHY_BASIC_FEATURES; 
phydev>advertising = phydev>supported; 
priv>speed = 0; 
priv>duplex = 1; 
priv>phydev = phydev; 

Our function is now done. Don't forget to call it from 
netdrv_mii_init() !

The last step is to implement the netdrv_handle_link_change() 
callback. This function will look at the phydev>link, phydev
>speed and phydev>duplex values, and update accordingly the FD 
(Full-Duplex) and SPD (Speed) bits of the Network Configuration 
Register (NCFGR).

First case to handle, when the link is up, we check if phydev
>speed and phydev>duplex are different from the one we saved in 
our private structure. If yes, then we update the NCFGR register, and 
save the new values in our private structure:

if (phydev>link) {
if ((priv>speed  != phydev>speed) ||
    (priv>duplex != phydev>duplex)) {

u32 reg;

reg = __raw_readl(priv>regs  + EMAC_NCFGR);

reg &= ~((1 << EMAC_NCFGR_SPD_SHIFT) |
 (1 << EMAC_NCFGR_FD_SHIFT));

if (phydev>duplex)
reg |= (1 << EMAC_NCFGR_FD_SHIFT);

if (phydev>speed == SPEED_100)
reg |= (1 << EMAC_NCFGR_SPD_SHIFT);

__raw_writel(reg, priv>regs + EMAC_NCFGR);

priv>speed = phydev>speed;
priv>duplex = phydev>duplex;

}
}

The next case to handle is when the link goes down. Here we 
simply reset the speed and duplex field of our private data 
structures, so that next time the link goes up, they have sane 
default values:

else {
priv>speed  = 0;
priv>duplex = 1;

}
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DMA buffers allocation, initialization and cleanup

We'll continue our work on the network driver by writing three 
auxiliary functions that we will use later:

• netdrv_alloc_consistent(), to allocate the DMA buffers

• netdrv_free_consistent(), to free the DMA buffers

• netdrv_init_rings(), to initialize the DMA rings

First, have a read of section 41.3.2 of the AT91SAM9263 datasheet. 
It explains how DMA works with the Ethernet controller.

Basically, we need two rings of DMA buffer descriptors, one for the 
reception buffers and one for the transmission buffers. These 
descriptors are 8 bytes long, with 4 bytes for the address of the 
DMA buffer, and 4 bytes for various control flags. So let's define a 
structure for these descriptors:

struct dma_desc { 
        u32     addr; 
        u32     ctrl; 
}; 

For the reception, we also need to allocate the DMA buffers 
themselves. According to the datasheet, their size is 128 bytes, 
therefore we define

#define RX_BUFFER_SIZE          128

We will arbitrarily decide that our reception ring contains 512 DMA 
buffers (and descriptors !), so let's define

#define RX_RING_SIZE            512

Therefore, the memory size to allocate for the reception DMA 
descriptors is

#define RX_RING_BYTES (sizeof(struct dma_desc) * RX_RING_SIZE)

Now, for the transmission, the buffers will be allocated by the 
kernel, since there are filled by userspace applications with the 
payload. For transmission, we will have 128 DMA descriptors, so 
let's define that and compute the amount of memory needed to 
store these descriptors:

#define TX_RING_SIZE   128 
#define TX_RING_BYTES  (sizeof(struct dma_desc) * TX_RING_SIZE) 

In addition to the DMA descriptors required by the hardware, we 
will also need to keep track of which packet is being transmitted 
through a given DMA descriptor, and where it is mapped in DMA 
memory. So, we define another structure, struct ring_info, 
which is not hardware-related, and is only used internally by our 
driver. We will later allocate TX_RING_SIZE elements of this 
structure:

struct ring_info { 
        struct sk_buff          *skb; 
        dma_addr_t              mapping; 
}; 

The struct sk_buffer is a pointer to the packet being transmitted, 
while the dma_addr_t is the DMA address at which the packet 
contents were mapped prior to the beginning of the transmission.
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We also need a few additional fields in our private structure, struct 
netdrv_device:

• struct dma_descs *rx_ring, which will contain the ring of 
reception DMA descriptors

• void *rx_buffers, which will contain the reception buffers 
themselves

• struct dma_desc *tx_ring, which will contain the ring of 
transmission DMA descriptors

• struct ring_info *tx_skb, which will contain the array of 
struct ring_info used to keep track of transmission DMA 
descriptors

• dma_addr_t rx_ring_dma, the DMA address of the reception 
ring (DMA addresses might be different from CPU addresses)

• dma_addr_t tx_ring_dma, the DMA address of the 
transmission ring

• dma_addr_t rx_buffers_dma, the DMA address of the 
reception buffers

• three unsigned integers, rx_tail, tx_head and tx_tail, that 
will be used to keep track of the consumption of the two rings 
of DMA descriptors

Now that the data structures are in place, let's create the allocation 
function, netdrv_alloc_consistent(). We will do four allocations:

1. Allocation of the array of struct ring_info, which can be 
done with normal memory allocation (kmalloc) since these 
informations are not going to be used by the Ethernet 
controller

2. Allocation of the reception DMA descriptors. Since they are 
shared with the Ethernet hardware, they must be allocated in 
a coherent way with dma_alloc_coherent().

3. Allocation of the transmission DMA descriptors. Same as the 
reception DMA descriptors.

4. Allocation of the reception buffers. Same as the reception 
DMA descriptors.

Write the netdrv_alloc_consistent() function, and make it fill 
the tx_skb, tx_ring, rx_ring, rx_buffers, rx_ring_dma, 
tx_ring_dma, rx_buffers_dma members of our private structure 
netdrv_device. Make sure you get the error handling correct.

Similarly, write the netdrv_free_consistent() function that does 
the opposite, using kfree() and dma_free_coherent().

Finally, we'll write a netdrv_init_rings() function to initialize the 
two rings, according to the datasheet specification.

For the reception ring, we'll initialize each descriptor with the 
address of the corresponding reception buffer. The last descriptor 
will have the WRAP bit of the addr field set, to indicate it is the last 
descriptor:

addr = priv>rx_buffers_dma; 
for (i = 0; i < RX_RING_SIZE; i++) { 
      priv>rx_ring[i].addr = addr; 
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      priv>rx_ring[i].ctrl = 0; 
addr += RX_BUFFER_SIZE; 

} 
priv>rx_ring[RX_RING_SIZE  1].addr |=

(1 << EMAC_DMA_RX_WRAP_SHIFT); 

For the transmission ring, we'll initialize all addresses to zero 
(since we don't yet have packets to transmit!), and we will set the 
USED bit in the ctrl field to indicate that these descriptors are 
owned by the CPU and not the Ethernet controller. Similarly to 
reception descriptors, the last transmission descriptor will have its 
WRAP bit set to indicate it's the last. Be careful, in reception 
descriptors, this bit is part of the addr field while for transmission 
descriptors, it is part of the ctrl field.

for (i = 0; i < TX_RING_SIZE; i++) { 
priv>tx_ring[i].addr = 0; 
priv>tx_ring[i].ctrl = (1 << EMAC_DMA_TX_USED_SHIFT); 

} 
priv>tx_ring[TX_RING_SIZE  1].ctrl |=

(1 << EMAC_DMA_TX_WRAP_SHIFT); 

Finally, reset the tx_head, tx_tail and rx_tail fields:

priv>rx_tail = priv>tx_head = priv>tx_tail = 0;

Hardware reset and initialization

Obviously, to do hardware initialization, we need a set of register 
addresses definitions:

• The transmit status register (TSR)
#define EMAC_TSR 0x14

• The receive buffer queue pointer (RBQP)
#define EMAC_RBQP 0x18

• The transmit buffer queue pointer (TBQP)
#define EMAC_TBQP 0x1C

• The reception status register (RSR)
#define EMAC_RSR 0x20

• The interrupt status register (ISR)
#define EMAC_ISR 0x24

• The interrupt enable register (IER)
#define EMAC_IER 0x28

• The interrupt disable register (IDR)
#define EMAC_IDR 0x2C

In addition to these, bit definitions are needed:

• For the Network Configuration Register (NCR), we need the 
bits to enable transmission and reception
#define EMAC_NCR_RE_SHIFT 2 
#define EMAC_NCR_TE_SHIFT 3 

• For the interrupt enable register (IER), we need the bits to 
enable interrupts on transmission and reception completion
#define EMAC_IER_RCOMP_SHIFT   1
#define EMAC_IER_TCOMP_SHIFT   7

Now, write a netdrv_reset_hw() function that:

13

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/


© 2009 Free Electrons, http://free-electrons.com          Creative Commons License© 2009 Free Electrons, http://free-electrons.com          Creative Commons License

• Set all bits to one in the Transmit Status Register

• Set all bits to one in the Reception Status Registered

• Set all bits to one in the Interrupt Disable Register

• Read the Interrupt Status Register to clear any pending 
interrupt

And write a netdrv_init_hw() function that:

• Calls netdrv_reset_hw()

• Sets the correct values in the Transmit Buffer Queue Pointer 
and Reception Buffer Queue Pointer registers

• Enable reception and transmission in the Network 
Configuration Register

• Enable the transmission and reception completion interrupts 
in the Interrupt Enable register

Of course, these functions will be used later.

Implement open and close operations

These operations are respectively called when the network 
interface is enabled and disabled, for example using ifconfig from 
userspace.

First, create two empty functions, netdrv_open() and 
netdrv_close(). Both functions return an integer value and take 
as argument a struct net_device pointer. Then, register these 
operations in the net_device_ops structure previously created, 
under the ndo_open and ndo_close fields:

       .ndo_open               = netdrv_open, 
       .ndo_stop               = netdrv_close, 

Now, let's implement these functions. In the netdrv_open() 
function, we need to:

• Allocate the DMA buffers using netdrv_alloc_consistent()

• Initialize the DMA buffers using netdrv_init_rings()

• Initialize the hardware using netdrv_init_hw()

• Start the PHY using phy_start() on the PHY device that 
we've previously stored in our private data structure. This 
phy_start() function will start polling the PHY regularly to 
detect link changes

• Call netif_start_queue() to tell the kernel that our 
interface is ready to operate packets

Symmetrically, in the netdrv_close() function:

• Call netif_stop_queue() to tell the kernel that our interface 
no longer accepts packets

• Stop the PHY using phy_stop()

• Reset the hardware using netdrv_reset_hw() so that 
interupts are disabled, etc.

• Free the DMA buffers using netdrv_free_consistent()
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Introduce locking

Until now, our driver does not implement proper locking, which 
might lead to incorrect concurrent access to shared resources. 
Therefore, we must implement locking. In this driver, a single 
spinlock will be used, since the concurrent accesses that must be 
prevented occur between the interrupt handler and the process 
context code.

Therefore, add a spinlock_t structure to our private data 
structure, and initialize this spinlock with spin_lock_init() in the 
probe() method.

Then, we must use this spinlock in:

• netdrv_handle_link_change(), with spin_lock_irqsave() 
and spin_unlock_irqrestore() to prevent concurrency 
between the execution of this function and the interrupt 
handler

• netdrv_close(), again with spin_lock_irqsave() and 
spin_lock_irqrestore() to prevent concurrency between 
interrupts and the operation of stopping the network 
interface. This must be done after stopping the queue and the 
PHY.

Implement transmission

Definitions

Before implementing the transmission function themselves, let's 
start by adding the usual definitions:

• The TSTART bit of the Network Configuration Register, used 
to start the transmission of the packets stored in the 
Transmission Queue
#define EMAC_NCR_TSTART_SHIFT 9

• The transmission completion bit of the Transmit Status 
Register
#define EMAC_TSR_COMP_SHIFT 5

• The bit of the transmission DMA descriptor that tells if the 
current descriptor is the last buffer of the current frame. In 
our case, this bit will be set of all transmission DMA 
descriptors since we will always send a packet in a single 
DMA buffer
#define EMAC_DMA_TX_LAST_SHIFT 15

• A macro that tells how many DMA buffers are currently 
available (free) in the queue
#define TX_BUFFS_AVAIL(priv) \ 
(((priv)>tx_tail <= (priv)>tx_head) ?                \ 
(priv)>tx_tail + TX_RING_SIZE  1  (priv)>tx_head: \ 
(priv)>tx_tail  (priv)>tx_head  1) 

• A macro that given an index in the queue of DMA 
transmission buffers, returns the index of the next one
#define NEXT_TX(n) (((n) + 1) & (TX_RING_SIZE  1))

The transmission entry point

The entry point of our driver for the transmission of packets is the 
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int ndo_start_xmit(struct sk_buff *, struct net_device *) 
operation. So, create an empty netdrv_start_xmit() function and 
register it in the net_device_ops structure.

The code of the netdrv_start_xmit() function will manipulate the 
queue of DMA buffer descriptors and this queue will also be 
modified by the interrupt handler. Therefore, locking must be used. 
As the start_xmit() function is guaranteed never to be called from 
an interrupt handler, we can directly use spin_lock_irq() and 
spin_unlock_irq().

Once the lock is taken, the first thing to check is if we have at least 
one remaining DMA buffer descriptor available to send the packet 
(using the TX_BUFFS_AVAIL macro) If not, this is really a problem 
since we are supposed to manage this queue and tell the kernel to 
stop sending packets when the queue is full. Therefore, if this 
happens, stop the queue with netif_stop_queue(), release the 
spinlock and return 1 (which the kernel will interpret as an error).

If we have at least one DMA buffer descriptor available, the next 
available is the one pointed by tx_head in our private data 
structure.

The next step is to map the packet so that it can be send through 
DMA (we are using « streaming DMA »). It takes place using the 
dma_map_single() function, which takes as argument a struct 
device pointer (can be found from our private data structure), the 
memory area to be mapped (the pointer to the packet data is skb
>data), the length (skb>length) and the direction of the DMA 
transfer (in our case a transmission to the device, so 
DMA_TO_DEVICE). The function returns a DMA address, of the type 
dma_addr_t. This is the address we must give to our device.

Then, update our internal tx_skb array with the DMA address and 
the pointer to the SKB. This will be useful at the completion of the 
transmission.

Now, let's compute the value of the ctrl field of the DMA buffer 
descriptor:

• It must contain the length of the data to transmit, skb->len

• The EMAC_DMA_TX_LAST_SHIFT bit must be set, as all our 
packets are sent through a single buffer

• If the buffer we're using is the last one of the queue (tx_head 
is equal to TX_RING_SIZE - 1), then the 
EMAC_DMA_TX_WRAP_SHIFT bit must be set

Then, initialize the addr field of the DMA buffer descriptor with the 
DMA address, and the ctrl field with the value computed 
previously. To prevent the reordering of these writes with the write 
that will start the transmission, add a write memory barrier after 
the setup of the DMA buffer descriptor.

Then, update the tx_head to the next available transmission buffer 
so that further calls to start_xmit() will use another buffer (hint: 
use the NEXT_TX macro).

Finally, start the transmission by setting the 
EMAC_NCR_TSTART_SHIFT bit of the Network Configuration 
Register. Be careful not to change the value of other bits in this 
register !
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Before the end of the function, we must tell the kernel if we still 
have DMA buffer descriptors available to accept new packets. Test 
the number of DMA buffer descriptors available, and call 
netif_stop_queue() if needed.

Transmission completion

The completion of the transmission will of course be notified by an 
interrupt. So, when an interrupt is raised, we will check if it's due 
to a transmission completion, and if so, we will unmap the DMA 
buffer, mark it as available, and potentially signal the kernel that 
we are ready again to send more packets.

So, the first part takes place in the interrupt handler, 
netdrv_interrupt(). First, we need to test if the interrupt really 
originates from our device. To do so, read the EMAC_ISR (Interrupt 
Status Register), and if it's 0 (no interrupt pending), then simply 
return IRQ_NONE to the kernel.

Otherwise, take our spinlock, so that the execution of the code of 
our interrupt handler is protected against concurrent access. Using 
the spin_lock() and spin_unlock() variant is sufficient, since our 
interrupt is already guaranteed to be disabled.

Then, we have to loop until the EMAC_ISR register is 0. This 
register gets reset to 0 when it's read, so there's no need to reset 
bits manually in it. However, this also mean that you must save and 
use the value of the register as it was in the first test at the 
beginning of the interrupt handler.

In the loop, test if the bit EMAC_IER_TCOMP_SHIFT bit is set, which 
notifies a transmission completion. If so, call a new netdrv_tx() 
function that will take care of finishing the transmission process.

Now, let's implement the netdrv_tx() function. This function should:

• Verify in the Transmit Status Register that a transmission 
completion occurred. To do so, one must

◦ Read the EMAC_TSR register

◦ Write the read value into the EMAC_TSR register to clear 
the bits (according to the controller specification, writing 
with a bit set actually clears the bit in the register)

◦ Test if the EMAC_TSR_COMP_SHIFT bit is set, and if not, 
return

• Test all DMA buffer descriptors (in a loop), for the tail 
(pointed by tx_tail) to the head (pointed by tx_head). 
Remember to use NEXT_TX() to compute the index of the next 
DMA buffer descriptor in the queue. For each descriptor, we 
will:

◦ Use a read memory barrier to make sure that what we will 
actually read is what has been set by the device into the 
DMA descriptor

◦ Test the EMAC_DMA_TX_USED_SHIFT bit. If it isn't set, then 
we have to stop the loop over the DMA descriptors, since 
it means that we reached a DMA descriptor whose 
transmission hasn't been completed by the controller

◦ Unmap the SKB using dma_unmap_single()
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◦ Free the SKB using dev_kfree_skb_irq()

◦ Reset the SKB pointer in our private tx_skb[] array.

• At the end of the loop, update tx_tail so that it points to the 
DMA descriptor to be analyzed at the next transmission 
completion interrupt.

• Finally, if the queue was stopped (which can be tested using 
netif_queue_stopped()) and if we have enough transmit 
buffers available (say 32), then tell then kernel to start 
sending packets again using netif_wake_queue().

With this transmission infrastructure in place, your system should 
be able to send packets. You can test with Wireshark on your host 
PC, and try to ping the host PC from the target. Ping will not work 
of course (due to the lack of reception support), but Wireshark 
should see ARP requests coming from the target.

Implement reception

The last (but not least!) part of our driver is obviously to implement 
the reception support.

The reception of packets is notified through an interrupt, so in the 
interrupt handler, we'll add a call to a netdrv_rx() function. This 
function will go through the list of DMA descriptors, and find the 
ranges of DMA descriptors that correspond to a packet. For each of 
these ranges, a netdrv_rx_frame() function will be called to handle 
the reception of a packet. Here, we have a difference between 
transmission and reception: on the transmission side, eack packet 
is completely sent through a single DMA buffer and descriptor, 
while on the reception side, DMA buffers are limited to 128 bytes, 
so multiple reception DMA buffers are usually needed to store the 
contents of a network packet.

Definitions

As usual, additional definitions are needed:

• Bit definitions for the DMA reception descriptors

◦ #define EMAC_DMA_RX_USED_SHIFT 0
This bit is set to one in the address field of the DMA 
descriptor by the device when the DMA buffer has been 
filled with data

◦ #define EMAC_DMA_RX_SOF_SHIFT 14
This bit is set to one in the control field of the DMA 
descriptor by the device when the data in this DMA buffer 
is the beginning of a network packet (SOF stands for Start 
of Frame)

◦ #define EMAC_DMA_RX_EOF_SHIFT 15
This bit is set to one in the control field of the DMA 
descriptor by the device when the data in this DMA buffer 
is the end of a network packet (EOF stands for End of 
Frame)

• As the Ethernet header is 14 bytes in size and for 
performance reasons, it's better to have the IP header word-
aligned, many Ethernet drivers allocates two additional bytes 
in each packet and shift by two bytes the Ethernet header. So 

18

Linux network
driver development
Training lab book

Linux network
driver development
Training lab book

http://free-electrons.com/
http://free-electrons.com/


© 2009 Free Electrons, http://free-electrons.com        Creative Commons License© 2009 Free Electrons, http://free-electrons.com        Creative Commons License

we define a constant RX_OFFSET:
#define RX_OFFSET 2

• A macro NEXT_RX(), implemented just like NEXT_TX() except 
that it wraps at RX_RING_SIZE instead of TX_RING_SIZE.

In the interrupt handler

The work in the interrupt handler is simple: after the test for the 
transmission completion, add a similar test on the 
EMAC_IER_RCOMP_SHIFT bit, and if this bit is set, call netdrv_rx().

The netdrv_rx() function

In this function, loop over the DMA descriptors starting at the 
reception tail (rx_tail), and so the following things:

• Call rmb() to make sure that what you're reading from the 
DMA descriptors will be correct

• If the EMAC_DMA_RX_USED_SHIFT bit in the address field of the 
current DMA descriptor isn't set, then we have reached the 
last received DMA buffer, and we can break out of the loop

• If the EMAC_DMA_RX_SOF_SHIFT bit in the control field of the 
current DMA descriptor is set, then the current DMA buffer is 
the beginning of a new packet. Store the index of the current 
DMA descriptor in a variable, so that we remember what is 
the first DMA buffer of the current packet

• If the EMAC_DMA_RX_EOF_SHIFT bit in the control field of the 
current DMA descriptor is set, then the current DMA buffer is 
the end of the current packet. So now, we have the index of 
the beginning of the packet (saved previously) and the index 
of the end of the packet. With these two informations, we call 
our netdrv_rx_frame() function to handle the reception of a 
complete packet

After the loop, remember to update the rx_tail properly.

The netdrv_rx_frame() function

This function is in charge of allocating an SKB from the network 
stack, filling it with the packet data, and submitting the SKB for 
analysis to the network stack.

At the beginning of the function, let's compute the length of the 
received packet. This length is store in the 11 low-order bits of the 
control field of the last DMA descriptor containing the packet.

Then, we ask the kernel to allocate a SKB for us, using 
dev_alloc_skb(). This function takes a length as argument, which 
must be the length of the received packet plus the RX_OFFSET used 
to make sure the IP header will be word-aligned. Of course, check 
that the allocation was successful. If it isn't, the packet is simply 
dropped, but don't forget to mark the DMA descriptors of the 
packet as unused by clearing the EMAC_DMA_RX_USED_SHIFT bit of 
the address field.

Then, we need to set-up the SKB:

• tell the kernel that the first two bytes of the packets are to be 
ignored using skb_reserve(skb, RX_OFFSET).
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• Tell the kernel that our device didn't do any verification of the 
packet checksums (some devices do this directly in 
hardware). This is done using skb>ip_summed = 
CHECKSUM_NONE.

• Tell the kernel how much data we will put in our SKB using 
skb_put() with the packet length as argument

Once our SKB is setup, let's go through the different DMA buffers 
that contain the data of our packet and handle them in a loop that 
does:

• Computes the length of the data available in the current DMA 
buffer. Usually it's the size of the buffer, RX_BUFFER_SIZE, 
except for the last one !

• Copy data from the DMA buffer to the SKB, using 
skb_copy_to_linear_data_offset(). The arguments of this 
function are: the SKB pointer, the offset in the SKB at which 
the data should be copied, the location from which the data 
should be taken, and the length of the data to copy

• Clear the EMAC_DMA_RX_USED_SHIFT bit in the DMA 
descriptor, to mark the corresponding DMA buffer as 
available again for future receptions

At the end of the function, we must compute the protocol of the 
packet that has been received and store it in the SKB: skb
>protocol = eth_type_trans(skb, priv>dev). 

And finally, submit the received packet to the kernel using 
netif_rx().

Now, your driver should be working, and network traffic should go 
back and forth between the target and the rest of the world. 
Congratulations!

Improvements

Compared to the official driver for this Ethernet controller as 
available in the kernel, our driver lacks a few features:

• No support for NAPI, which allows to limit the interrupt rate 
when the network traffic increases significantly

• No support for the ethtool API, which allows userspace 
applications to get informations about the status of the link 
and to configure a few settings

• No support for the statistics (packets received/sent, bytes 
received/sent, errors, etc.)

• No support for promiscuous mode and for the multicast filters

• No proper management of errors communicated by the 
Ethernet controller
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