
New features in Linux 2.6
Training lab book

New features in Linux 2.6
Training lab book

Thomas Petazzoni
Free Electrons

http://free-electrons.com

1 © 2004-2009, Free Electrons, http://free-electrons.com, Creative Commons License

http://free-electrons.com/
http://free-electrons.com/

New features in Linux 2.6
Training lab book

About this document

This document is part of an embedded Linux training from Free Electrons.

You will find the whole training materials (slides and lab book)
on http://free-electrons.com/training/linux26.

Lab data can be found on http://free-electrons.com/labs/embedded_linux.tar.bz2.

Copying this document

© 2009, Free Electrons, http://free-electrons.com.

This document is released under the terms of the Creative Commons Attribution-
ShareAlike 3.0 license. This means you are free to download, distribute and even modify it,
under certain conditions.

Document updates and translations available on http://free-electrons.com/docs/linux26-features.

Corrections, suggestions, contributions and translations are welcome!

Training setup

See the training labs on http://free-electrons.com/training/drivers for setup instructions, which are
shared with these practical labs.

2 © 2004-2009, Free Electrons, http://free-electrons.com, Creative Commons License

http://free-electrons.com/training/drivers
http://free-electrons.com/docs/linux26-features
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://free-electrons.com/
http://free-electrons.com/labs/embedded_linux.tar.bz2
http://free-electrons.com/training/linux26
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 1 – Use the new debugfs filesystem

Objective: Set up and use in a simple kernel module the new
debugfs facility

After this lab, you will be able to

Configure and compile the Linux kernel with debugfs support
Configure userspace to access debugfs
Create, compile and use a kernel module that exports debugging
information to userspace using debugfs

Setup

Go to the /mnt/labs/linux26/lab1 directory.

Make sure you have at least 600 MB of free disk space.

Getting, configuring and compiling the kernel

Create a linux/ directory and download the 2.6.24 kernel inside this
directory using ketchup.

Modify the main kernel Makefile to do cross-compilation on ARM :
set ARCH to arm and CROSS_COMPILE to arm­linux­. Then, configure
the kernel for the Realview machine type, using

make realview_defconfig

Edit the generated configuration to :

● enable support for the debug filesystem, in the Kernel
Hacking section of the kernel configuration tool

● enable support for root filesystem over NFS (in Networking,
Kernel level autoconfiguration, and in File systems, NFS
client support and NFS root filesystem support)

Finally, compile your kernel !

NFS environment setup

Setup your system so that the nfsroot/ directory is exported by
NFS. You can follow the instructions of lab 4 of « Embedded Linux
kernel and driver development » training book, available of Free
Electrons' website.

You should now be able to run Qemu using the provided run_qemu
script, and see a shell start after the kernel boot. Make sure that the
debugfs support is properly compiled by looking at the
/proc/filesystems file.

Setup the debugfs filesystem

To access the informations exported through debugfs by the kernel,
this virtual filesystem needs to be mounted. In the target filesystem,
create a /debug directory, and make sure the debugfs filesystem gets
mounted during boot by modifying the /etc/init.d/rcS script.

Use debugfs

The /src directory of the target filesystem contains a kernel module

3

New features in Linux 2.6
Training lab book

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

skeleton, with two variables: myvar and str. The goal of the lab is to
export them to userspace using debugfs. Documentation for debugfs
is available at:

http://www.free-electrons.com/kerneldoc/latest/DocBook/filesystems/

Fill the debugfstest_init() and debugfstest_exit() functions to
properly export and unexport these variables to userspace, in a new
debugfs directory named test.

4

New features in Linux 2.6
Training lab book

http://www.free-electrons.com/kerneldoc/latest/DocBook/filesystems/
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 2 – Creating an userspace driver

Objective: Experiment the new UIO framework of the Linux
kernel to implement a simple userspace driver

After this lab, you will be able to

Configure and compile the Linux kernel with UIO support
Create the small kernel module needed for UIO
Create an userspace application that interacts with the hardware
through UIO

Setup

Go to the /mnt/labs/linux26/lab2 directory.

Make sure you have at least 600 MB of free disk space.

Getting, configuring and compiling the kernel

Create a linux/ directory and download the 2.6.24 kernel inside this
directory using ketchup. Apply the data/uio­on­arm.patch patch
to the kernel tree.

Modify the main kernel Makefile to do cross-compilation on ARM: set
ARCH to arm and CROSS_COMPILE to arm­linux­. Then, configure the
kernel for the Realview machine type, using

make realview_defconfig

Edit the generated configuration to:

● disable support for the PL011 serial driver

● enable support for UIO

● enable support for root filesystem over NFS (in Networking,
Kernel level autoconfiguration, and in File systems, NFS
client support and NFS root filesystem support)

Finally, compile your kernel!

NFS environment setup

Setup your system so that the nfsroot/ directory is exported by
NFS. You can follow the instructions of lab 4 of « Embedded Linux
kernel and driver development » training book, available of Free
Electrons' website.

You should now be able to run Qemu using the provided run_qemu
script, and see a shell start after the kernel boot.

Basic UIO driver

The goal of the lab is to write a simple UIO driver for the PL011
UART, which will allow to send and receive characters through the
serial port.

UIO drivers are made of two parts: a small kernel module that
registers the driver and contains a basic interrupt handler, and an
userspace part, which is the core of the driver. Documentation about
UIO is available in the DocBook format in the kernel Documentation/

5

New features in Linux 2.6
Training lab book

Patching the kernel is needed because
the main ARM Kconfig file does not use
the default drivers/Kconfig file. So
every time a new driver type is added
to the kernel, the ARM Kconfig file
must be updated. Work is ongoing to
fix that in the next version of the
kernel.

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

directory and a compiled version of it is available online at
http://www.free-electrons.com/kerneldoc/latest/DocBook/uio-howto.

The nfsroot/src/ directory contains a skeleton for the kernel
module and the userspace driver. Your first task is to get the
character emission working by :

● filling the pl011_probe() and pl011_remove() functions so
that they properly register and unregister the device to the
UIO framework

● filling the main() function of the userspace driver to open the
UIO device, map its register region to memory using mmap(),
and write some characters to the correct register so that they
get written to the serial port

The following hints will help you in filling the functions :

● In the pl011_probe() function, the physical memory address of
the serial port is available in dev­>res.start, and the end of
the register region is in dev­>res.end.

● Start without any interrupt handler.

● Sending bytes through the serial ports is done by writing to
the UART01x_DR register, for which a macro is available in the
userspace driver skeleton. The macro contains the offset of
the register in the register region.

● You will have to create the /dev/uio0 device node with the
correct major and minor numbers. They can be found in /sys/
class/uio/.

● The 2.6.24 kernel contains the kernel part of an UIO driver, in
the file drivers/uio/uio_cif.c. Do not hesitate to use it as
an example !

To test your driver, you will have to first compile it on the host using
the provided Makefile, which compiles both the kernel and user
parts. Then, on the target, you need to insert the kernel module into
the running kernel :

insmod /src/pl011­uio.ko

Once the kernel module is correctly inserted, you can run the
userspace driver :

/src/user

Note that Qemu is configured with the ­serial stdio option which
means that the first serial port input and output take place through
the terminal that was used to run Qemu.

Adding support for reception

To get reception from the serial port working, we will use the
interrupt handling facilities provided by UIO. By registering a simple
interrupt handler through UIO, your userspace driver will be able to
block using the read() system call until an interrupt occurs.

By following the documentation of UIO, write and register an
interrupt handler in your kernel module that :

● reads from the UART011_MIS register, and if the value is zero,
returns with IRQ_NONE. A zero value means that no interrupt

6

New features in Linux 2.6
Training lab book

To get your pl011_remove() function
working, you'll have to use the
amba_set_drvdata() and
amba_get_drvdata() function. They
allow to associate an opaque pointer,
such as your pointer to the struct
uio_info to an amba_device structure.
That way, you'll be able to get back
your struct uio_info pointer in
pl011_remove().

http://www.free-electrons.com/kerneldoc/latest/DocBook/uio-howto
http://www.free-electrons.com/kerneldoc/latest/DocBook/uio-howto
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

occurred for this device : the interrupt is probably coming for
another device sharing the same IRQ line.

● writes 0 to the UART011_IMSC register to disable the interrupt
and returns IRQ_HANDLED. It allows to disable the interrupts
until it is handled by userspace, and to notify the Linux kernel
that the interrupt was correctly handled.

In the pl011_probe() function, in addition to the registration in UIO
of the interrupt handler, we need to properly initialize the device to
get interrupts working :

● write UART011_IFLS_TX4_8 to the UART011_IFLS register

● write UART01x_CR_UARTEN | UART011_CR_RXE |
UART011_CR_TXE to the UART011_CR register

● write UART011_RXIM to the UART011_IMSC register

On the userspace side, we can now wait for interrupts by simply
reading a four bytes integer from the UIO device. The integer
contains the number of interrupts received up to now. It allows to
detect if interrupts were missed or not. When an interrupt has been
received, we can read the received character from the same register
we used to transmit characters. To get the next interrupts, we also
need to re-enable interrupts by writing UART011_RXIM to the
UART011_IMSC register.

Now, when pressing keys in the console that runs Qemu, an interrupt
should be generated and your userspace driver should be properly
notified and able to receive the characters.

7

New features in Linux 2.6
Training lab book

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

