Linux USB drivers

Linux USB drivers

Michael Opdenacker
Free Electrons
http://free-electrons.com/

Created with OpenOffice.org 2.x

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
° http://free-electrons.com Sep 15,2009

http://free-electrons.com/
http://free-electrons.com/
http://openoffice.org/

Purpose of this course

Learn how to implement
Linux drivers

for some of the most
complex USB devices!

Buy yours on http://www.thinkgeek.com/stuff/41/fundue.shtml!
@

Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
. http://free-electrons.com Sep 15, 2009 :

http://free-electrons.com/
http://www.thinkgeek.com/stuff/41/fundue.shtml

Rights to copy

@creative
commons

COMMONS DEETD

Attribution — ShareAlike 2.5 © Copyrlght 2006-2007
You are free Free Electrons
® (o copy, distribute, display, and perform the work feedback @free-electrons.com

© to make derivative works .
Document sources, updates and translations:

http://free-electrons.com/articles/linux-usb

© (o make commercial use of the work
Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work,

you may distribute the resulting work only under a license translations are welcome!
identical to this one.

Corrections, suggestions, contributions and

® For any reuse or distribution, you must make clear to others the
license terms of this work.

© Any of these conditions can be waived if you get permission from
the copyright holder.

Your fair use and other rights are in no way affected by the above.

License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
° http://free-electrons.com

Sep 15, 2009

http://free-electrons.com/
http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://free-electrons.com/articles/linux-usb

Best viewed with...

This document 1s best viewed with a recent PDF reader
or with OpenOffice.org itself!

» Take advantage of internal or external hyperlinks.
So, don’t hesitate to click on them!

» Find pages quickly thanks to automatic search
» Use thumbnails to navigate in the document in a quick way

If you’re reading a paper or HTML copy, you should get your
copy in PDF or OpenOffice.org format on
http://free-electrons.com/articles/linux-usb!

¢ B
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, F ree E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license ; —_—— 4
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial

http://free-electrons.com/
http://openoffice.org/
http://openoffice.org/
http://free-electrons.com/articles/linux-usb

Course prerequisites

» Fondue cheese

» Good knowledge about Linux device driver development.
Most notions which are not USB specific are covered
in our http://free-electrons.com/training/drivers course.

» To create real, working drivers: a good knowledge about the
USB devices you want to write drivers for. A good
knowledge about USB specifications too.

¢ @
Linux USB drivers
© Copyright 2006-2007, Free Electrons
@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 5
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://free-electrons.com/training/drivers

Contents

Linux USB basics Writing USB drivers

» Linux USB drivers » Supported devices

» USB devices P Registering a USB driver

» User-space representation » USB transfers without URBs

Linux USB communication

» USB Request Blocks

P Initializing and submitting URBs

» Completion handlers

© o5
Linux USB drivers '
© Copyright 2006-2007, Free Electrons
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , L .
° http://free-electrons.com Sep 15,2009 ”lh |,._a|

http://free-electrons.com/

Linux USB drivers

Linux USB basics
Linux USB drivers

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
° http://free-electrons.com Sep 15,2009

http://free-electrons.com/

USB drivers (1)

USB core drivers

» Architecture independent kernel subsystem.
Implements the USB bus specification.
Outside the scope of this training.

USB host drivers

» Different drivers for each USB control hardware.
Usually available in the Board Support Package.
Architecture and platform dependent.

Not covered yet by this training.

¢ @
Linux USB drivers '
© Copyright 2006-2007, Free Electrons
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , ——— 8
° http://free-electrons.com Sep 15,2009 ”|'-1|ﬁ-'2|

http://free-electrons.com/

USB drivers (2)

USB device drivers

» Drivers for devices on the USB bus.
The main focus of this course!

» Platform independent: when you use Linux on an embedded
platform, you can use any USB device supported by Linux
(cameras, keyboards, video capture, wi-f1 dongles...).

USB device controller drivers

» For Linux systems with just a USB device controller
(frequent in embedded systems).
Not covered yet by this course.

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
° http://free-electrons.com Sep 15,2009

http://free-electrons.com/

USB gadget drivers

Drivers for Linux systems with a USB device controller

P Typical example: digital cameras.
You connect the device to a PC and see the camera
as a USB storage device.

» USB device controller driver:
Platform dependent. Supports the chip connecting to the USB bus.

P USB gadget drivers, platform independent. Examples:
Ethernet gadget: implements networking through USB
Storage gadget:. makes the host see a USB storage device
Serial gadget: for terminal-type of communication.

See Documentation/DocBook/gadget/ in kernel sources.

Ly
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

, L
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial

10

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/DocBook/gadget/index.html

Linux USB support overview

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

User applications Users

¢

System call interface

USB device drivers Other kernel subsystems

USB core

USB host controller driver .
Linux Kernel

USB host controller ﬂ %i-‘“/ | Hardware
(D) USB device

Linux USB drivers
© Copyright 2006-2007, Free Electrons

° http://free-electrons.com

Sep 15,2009

http://free-electrons.com/

USB host controllers - OHCI and UHCI

2 competing Host Control Device (HCD) interfaces

» OHCI - Open Host Controller Interface
Compagq's implementation adopted as a standard for USB 1.0 and 1.1
by the USB Implementers Forum (USB-IF).
Also used for Firewire devices.

» UHCI - Universal Host Controller Interface.
Created by Intel, insisting that other implementers use it and pay
royalties for it. Only VIA licensed UHCI, and others stuck to OHCI.

This competition required to test devices for both host controller standards!

For USB 2.0, the USB-IF insisted on having only one standard.
Linux USB drivers

*
© Copyright 2006-2007, Free Electrons i f
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

° http://free-electrons.com Sep 15,2000 ”l 'Tl:al | 12

http://free-electrons.com/

USB host controllers - EHCI

EHCI - Extended Host Controller Interface.
» For USB 2.0. The only one to support high-speed transfers.

» Each EHCI controller contains four virtual HCD implementations to
support Full Speed and Low Speed devices.

» On Intel and VIA chipsets, virtual HCDs are UHCI.
Other chipset makers have OHCI virtual HCDs.

*

Linux USB drivers # !
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

, T
° http://free-electrons.com Sep 15,2000 ”l I-”JI 13

http://free-electrons.com/

USB transfer speed

» Low-Speed: up to 1.5 Mbps
Since USB 1.0

» Full-Speed: up to 12 Mbps
Since USB 1.1

» Hi-Speed: up to 480 Mbps
Since USB 2.0

Linux USB drivers

r
© Copyright 2006-2007, Free Electrons i !

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , . 1 4
° http://free-electrons.com Sep 15,2009 ”lh |,._2|

http://free-electrons.com/

Linux USB drivers

Linux USB basics
USB devices

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
° http://free-electrons.com Sep 15,2009

http://free-electrons.com/

USB descriptors

Operating system independent. Described in the USB specification

» Device - Represent the devices connected to the USB bus.
Example: USB speaker with volume control buttons.

» Configurations - Represent the state of the device.
Examples: Active, Standby, Initialization

» Interfaces - Logical devices.
Examples: speaker, volume control buttons.

PNV N N

» Endpoints - Unidirectional communication pipes.
Either IN (device to computer) or OUT (computer to device).
Linux USB drivers

*
© Copyright 2006-2007, Free Electrons i !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| P
° http://free-electrons.com Sep 15,2000 ”l '-Ilﬁ-'al 16

http://free-electrons.com/

Control endpoints

» Used to configure the device, get information about it, send
commands to it, retrieve status information.

» Simple, small data transfers.

» Every device has a control endpoint (endpoint 0),
used to configure the device at insertion time.

» The USB protocol guarantees that the corresponding data
transfers will always have enough (reserved) bandwidth.

[¥) e
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, F ree E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license ; —_—— 17
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial

http://free-electrons.com/

Interrupt endpoints

» Transfer small amounts of data at a fixed rate
each time the hosts asks the device for data.

» Guaranteed, reserved bandwidth.

» For devices requiring guaranteed response time,
such as USB mice and keyboards.

» Note: different than hardware interrupts.
Require constant polling from the host.

¢ e
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , L 1 8
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/

Bulk endpoints

» Large sporadic data transfers
using all remaining available bandwidth.

» No guarantee on bandwidth or latency.
» Guarantee that no data is lost.

» Typically used for printers, storage or network devices.

@ &
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 1 9
http://free-electrons.com Sep 15,2009 ”|'-1|ﬁ-'2|

(]

http://free-electrons.com/

Isochronous endpoints

» Also for large amounts of data.

» Guaranteed speed
(often but not necessarily as fast as possible).

» No guarantee that all data makes it through.

» Used by real-time data transfers (typically audio and video).

¢ s
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , L 20
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/

The usb endpoint descriptor structure (1)

The usb_endpoint descriptor structure contains all the
USB-specific data announced by the device itself.
Here are useful fields for driver writers:

» u8 bEndpointAddress:
USB address of the endpoint.
It also includes the direction of the endpoint. You can use the
USB_ENDPOINT DIR MASK bitmask to tell whether this is a
USB _DIR INorUSB DIR OUT endpoint. Example:

1f ((endpoint->desc.bEndpointAddress &
USB_ENDPOINT DIR MASK) == USB DIR IN)

[¥) e
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , L 2 1
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_endpoint_descriptor
http://lxr.free-electrons.com/ident?i=bEndpointAddress
http://lxr.free-electrons.com/ident?i=USB_ENDPOINT_DIR_MASK
http://lxr.free-electrons.com/ident?i=USB_DIR_IN
http://lxr.free-electrons.com/ident?i=USB_DIR_OUT
http://lxr.free-electrons.com/ident?i=USB_ENDPOINT_DIR_MASK
http://lxr.free-electrons.com/ident?i=USB_DIR_IN

The usb _endpoint descriptor structure (2)

» u8 bmAttributes:
The type of the endpoint. You can use the USB_ ENDPOINT XFERTYPE MASK
bitmask to tell whether the type is USB_ ENDPOINT XFER ISOC,
USB_ENDPOINT XFER BULK, USB_ENDPOINT XFER INT or
USB_ENDPOINT XFER CONTROL.

» u8 wMaxPacketSize:
Maximum size in bytes that the endpoint can handle. Note that if greater sizes are used,
data will be split in wMaxPacketSize chunks.

» u8 bInterval:
For interrupt endpoints, device polling interval (in milliseconds).

Note that the above names do not follow Linux coding standards.
The Linux USB implementation kept the original name from the USB specification
(http://www.usb.org/developers/docs/).

[¥ & :
Linux USB drivers

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| .
° http://free-electrons.com Sep 15,2000 ”l '-Ilﬁ-'al 22

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=bmAttributes
http://lxr.free-electrons.com/ident?i=USB_ENDPOINT_XFERTYPE_MASK
http://lxr.free-electrons.com/ident?i=USB_ENDPOINT_XFER_ISOC
http://lxr.free-electrons.com/ident?i=USB_ENDPOINT_XFER_BULK
http://lxr.free-electrons.com/ident?i=USB_ENDPOINT_XFER_INT
http://lxr.free-electrons.com/ident?i=USB_ENDPOINT_XFER_CONTROL
http://lxr.free-electrons.com/ident?i=wMaxPacketSize
http://lxr.free-electrons.com/ident?i=wMaxPacketSize
http://lxr.free-electrons.com/ident?i=bInterval
http://www.usb.org/developers/docs/

Interfaces

» Each interface encapsulates a single high-level function (USB logical
connection). Example (USB webcam): video stream, audio stream,
keyboard (control buttons).

P One driver is needed for each interface!

» Alternate settings: each USB interface may have different parameter
settings. Example: different bandwidth settings for an audio interface.
The 1nitial state 1s in the first setting, (number 0).

P Alternate settings are often used to control the use of periodic endpoints,
such as by having different endpoints use different amounts of reserved
USB bandwidth. All standards-compliant USB devices that use
isochronous endpoints will use them in non-default settings.

¢ *®
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license . 2 3
© http://free-electrons.com Sep 15,2000 ”ll dﬂial

http://free-electrons.com/

The usb interface structure (1)

USB interfaces are represented by the usb_interface structure.
It 1s what the USB core passes to USB drivers.

P struct usb host interface *altsetting;
List of alternate settings that may be selected for this interface, in
no particular order.
The usb_host interface structure for each alternate setting
allows to access the usb_endpoint descriptor structure
for each of 1ts endpoints:
interface->alsetting[i]->endpoint[j]->desc

P unsigned int num altsetting;
The number of alternate settings.

[¥) e
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , L 2 4
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_interface
http://lxr.free-electrons.com/ident?i=usb_host_interface
http://lxr.free-electrons.com/ident?i=usb_host_interface
http://lxr.free-electrons.com/ident?i=usb_endpoint_descriptor

The usb interface structure (2)

P struct usb host interface *cur altsetting;
The currently active alternate setting.

» int minor;
Minor number this interface 1s bound to.
(for drivers using usb register dev(), described later).

Other fields 1n the structure shouldn't be needed by USB drivers.

Linux USB drivers

*
© Copyright 2006-2007, Free Electrons i !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| P
° http://free-electrons.com Sep 15,2000 ”l '-Ilﬁ-'al 25

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_host_interface
http://lxr.free-electrons.com/ident?i=usb_register_dev

Configurations

Interfaces are bundled into configurations.

» Configurations represent the state of the device.
Examples: Active, Standby, Initialization

» Configurations are described
with the usb _host config structure.

» However, drivers do not need to access this structure.

Linux USB drivers
© Copyright 2006-2007, Free Electrons

@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
. http://free-electrons.com Sep 15,2009

*

26

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_host_config

Devices

» Devices are represented by the usb device structure.

» We will see later that several USB API functions need such a
structure.

» Many drivers use the interface to usbdev()
function to access their usb_device structure from the
usb interface structure they are given by the USB core.

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

= Y
° http://free-electrons.com Sep 15, 2009 . ”l fﬁ,._-ﬂl 27

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_device
http://lxr.free-electrons.com/ident?i=interface_to_usbdev
http://lxr.free-electrons.com/ident?i=usb_device
http://lxr.free-electrons.com/ident?i=usb_interface

USB device overview

Configuration Active

Configuration Standby

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
Sep 15,2009

Linux USB drivers

http://free-electrons.com

Device
USB webcam

http://free-electrons.com/

USB devices - Summary

» Hierarchy: device — configurations — interfaces — endpoints
» 4 different types of endpoints

» control: device control, accessing information, small transfers.
Guaranteed bandwidth.

» interrupt (keyboards, mice...): data transfer at a fixed rate.
Guaranteed bandwidth.

» bulk (storage, network, printers...): use all remaining
bandwidth. No bandwidth or latency guarantee.

P isochronous (audio, video...): guaranteed speed.
Possible data loss.

*

Linux USB drivers # !
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

, T
° http://free-electrons.com Sep 15,2000 ”l I-”JI 29

http://free-electrons.com/

Linux USB drivers

Linux USB basics

User-space representation

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
° http://free-electrons.com Sep 15,2009

http://free-electrons.com/

usbview

" . USB Viewer

http://usbview.sourceforge.net [Terci Hos conler D58 Recamer e
. . Il --UHCI Host Controller | [Manufacturer: Logitech
Graphlcal dlsplay |Er UHCI Hos Ctroller S%%e%elé?ﬂ?fﬁ .(1|%W)
S Device Clags: 00{>if
Of the contents Of “UHCI Host Controller sz:gg SUabS;ass:(:SlOC)
Drevice Frotocol, 00
/proc/bus/usb/devices. T efaLt Enapaint Size: 8

"endor |d: 046d
Froduct Id: ¢80a
Revision Number: 2010

Config Number: 1
Number of Interfaces: 1
Attributes; a0
MaxFower Meeded; 50mA

Interface Mumber; O
Mame; usbhid
Alternate Mumber: 0
Class: 03(HID)
Sub Class: 1
Protocal: 2
MNumber of Endpoints: 1

Endpoint Address: &1
Direction: in
Attribute:; 8

Type: Int.

Maw Facket Size: 8
Interval; 10ms

Fefresh About.., Close

Linux USB drivers
© Copyright 2006-2007, Free Electrons

. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
. http://free-electrons.com Sep 15, 2009

http://free-electrons.com/
http://usbview.sourceforge.net/

usbtree

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
° http://free-electrons.com

http://www.linux-usb.org/usbtree

Also displays information from /proc/bus/usb/devices:

> usbtree

\/: Bus 04.Port 1: Dev 1, Class=root hub, Driver=ehci hcd/6p, 480M
/: Bus 03.Port 1l: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M
/: Bus 02.Port 1l: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M

| Port 1: Dev 7, If 0, Class=HID, Driver=usbhid, 1.5M
/: Bus 0l.Port 1: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M

Sep 15,2009

http://free-electrons.com/
http://www.linux-usb.org/usbtree

Linux USB drivers

Linux USB communication
USB Request Blocks

* -
© Copyright 2006-2007, Free Electrons i !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license Sl 3 3

Linux USB drivers
, -
° http://free-electrons.com Sep 15,2009 ”lh |,._a|

http://free-electrons.com/

USB Request Blocks

» Any communication between the host and device is done
asynchronously using USB Request Blocks (urbs).

» They are similar to packets in network communications.
» Every endpoint can handle a queue of urbs.
» Every urb has a completion handler.

» A driver may allocate many urbs for a single endpoint, or
reuse the same urb for different endpoints.

See Documentation/usb/URB. txt in kernel sources.

¢ @
Linux USB drivers
© Copyright 2006-2007, Free Electrons
@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 3 4
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/usb/URB.txt

Urban life

Device , The lifecycle of an urb
Creation ~

driver
USB core

Assigned (controller
to an endpoint

driver)

Submitted Transfered
— .
yes to the USB core to the device

Y

can be < Notification at
reused? transfer completion

+ no

Deletion

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
. http://free-electrons.com Sep 15,2009

http://free-electrons.com/

The urb structure (1)

Fields of the urb structure useful to USB device drivers:

P struct usb device *dev;
Device the urb is sent to.
» unsigned int pipe;
Information about the endpoint in the target device.

» int status;
Transfer status.

» unsigned int transfer flags;
Instructions for handling the urb.

¢ %
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , - 3 6
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=urb

The urb structure (2)

» void * transfer buffer;
Buffer storing transferred data.
Must be created with kmalloc()!

P dma addr t transfer dma;
Data transfer buffer when DMA 1s used.

» int transfer buffer length;
Transfer buffer length.

P int actual length;
Actual length of data received or sent by the urb.

» usb complete t complete;
Completion handler called when the transfer i1s complete.

¢ %
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , - 37
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=kmalloc

The urb structure (3)

» void *context;
Data blob which can be used in the completion handler.

P unsigned char *setup packet; (control urbs)
Setup packet transferred before the data in the transfer buffer.

» dma addr t setup dma; (control urbs)
Same, but when the setup packet is transferred with DMA.

P int interval; (isochronous and interrupt urbs)
Urb polling interval.

» int error count; (isochronous urbs)
Number of 1sochronous transfers which reported an error.

¢ e
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , L 38
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/

The urb structure (4)

» int start frame; (isochronous urbs)
Sets or returns the initial frame number to use.

» int number of packets; (isochronous urbs)
Number of isochronous transfer buffers to use.

P struct usb iso packet descriptor (isochronous urbs)
iso frame desc[0];
Allows a single urb to define multiple 1sochronous transfers at once.

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 39
http://free-electrons.com Sep 15,2009 ”|l,1|m-‘2|

(]

http://free-electrons.com/

Creating pipes

Functions used to initialize the pipe field of the urb structure:
» Control pipes
usb sndctrlpipe(),usb _rcvctrlpipe()

P Bulk pipes
usb sndbulkpipe(),usb _rcvbulkpipe()

P Interrupt pipes
usb sndintpipe(),usb_rcvintpipe()

P Isochronous pipes
usb sndisocpipe(),usb _rcvisocpipe()

Prototype

_ , send (out) receive (in) _ _ ,
unsigned int usb_[shg/rcv]}wtrl/bulk/lnt/lsoc]plpe (

struct usb device *dev, unsigned int endpoint);

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

, ——
° http://free-electrons.com Sep 15,2009 ”lI:WJI 40

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_sndctrlpipe
http://lxr.free-electrons.com/ident?i=usb_rcvctrlpipe
http://lxr.free-electrons.com/ident?i=usb_sndbulkpipe
http://lxr.free-electrons.com/ident?i=usb_rcvbulkpipe
http://lxr.free-electrons.com/ident?i=usb_sndintpipe
http://lxr.free-electrons.com/ident?i=usb_rcvintpipe
http://lxr.free-electrons.com/ident?i=usb_sndisocpipe
http://lxr.free-electrons.com/ident?i=usb_rcvisocpipe

Creating urbs

P urb structures must always be allocated with the usb _alloc urb()
function.
That's needed for reference counting used by the USB core.

#include <linux/usb.h>

struct urb *usb alloc urb(
int iso packets, // Number of 1sochronous
/l packets the urb should contain.
// 0 for other transfer types
gfp t mem flags); //Standard kmalloc() flags

P Check that it didn't return NULL (allocation failed)!

» Typical example:
urb = usb alloc _urb(0, GFP_KERNEL);

-

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , |
° http://free-electrons.com Sep 15,2009 ”lh |,._a|

41

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_alloc_urb
http://lxr.free-electrons.com/source/include/linux/usb.h
http://lxr.free-electrons.com/ident?i=usb_alloc_urb
http://lxr.free-electrons.com/ident?i=usb_alloc_urb

Freeing urbs

» Similarly, you have to use a dedicated function to release urbs:

void usb free urb(struct urb *urb);

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

N
) =
° http://free-electrons.com Sep 15,2009 ”|'11|ﬁ-a|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_free_urb

USB Request Blocks - Summary

» Basic data structure used in any USB communication.
» Implemented by the struct urb type.

» Must be created with the usb _alloc urb() function.
Shouldn't be allocated statically or with kmalloc ().

» Must be deleted with usb free urb().

¢ s
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , L 4 3
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=urb
http://lxr.free-electrons.com/ident?i=usb_alloc_urb
http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=usb_free_urb

Linux USB drivers

Linux USB communication
Initializing and submitting urbs

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , L .
° http://free-electrons.com Sep 15,2009 ”lh |,._2- I

http://free-electrons.com/

Initializing interrupt urbs

void usb fill int urb (

struct urb *urb, // urb to be initialized

struct usb device *dev, //device to send the urb to

unsigned int pipe, // pipe (endpoint and device specific)
void *transfer buffer, //transfer buffer

int buffer length, // transfer buffer size

usb complete t complete, // completion handler

void *context, // context (for handler)

int interval // Scheduling interval (see next page)

) ;

P This doesn't prevent you from making more changes
to the urb fields before urb submission.

P The transfer flags field needs to be set by the driver.

[¥
Linux USB drivers

© Copyright 2006-2007, Free Electrons

o o . : o -
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license v C
http://free-electrons.com | ”| L "._-ﬂ I

o Sep 15, 2009

435

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_fill_int_urb

urb scheduling interval

For interrupt and 1sochronous transfers

» Low-Speed and Full-Speed devices:
the interval unit is frames (ms)

» Hi-Speed devices:
the interval unit is microframes (1/8 ms)

Linux USB drivers
© Copyright 2006-2007, Free Electrons

@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
. http://free-electrons.com Sep 15, 2009 ”

http://free-electrons.com/

Initializing bulk urbs

Same parameters asinusb fill int urb(),
except that there is no interval parameter.

void usb fill bulk urb (

struct urb *urb, // urb to be 1nitialized

struct usb device *dev, //device to send the urb to
unsigned int pipe, // pipe (endpoint and device specific)
void *transfer buffer, /] transfer buffer

int buffer length, /[transfer buffer size

usb complete t complete, //completion handler

void *context, /I context (for handler)

) ;

[¥
Linux USB drivers

© Copyright 2006-2007, Free Electrons

o o . : o -
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license v C
http://free-electrons.com | ”| L "._-ﬂ I

o Sep 15, 2009

47

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_fill_int_urb
http://lxr.free-electrons.com/ident?i=usb_fill_bulk_urb

Initializing control urbs

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Same parameters as inusb_fill bulk urb(),
except that there is a setup packet parameter.

void usb fill control urb (

struct urb *urb, // urb to be initialized
struct usb device *dev, //device to send the urb to
unsigned int pipe, // pipe (endpoint and device specific)

unsigned char *setup packet, //setup packet data
void *transfer buffer, //transfer buffer

int buffer length, // transfer buffer size
usb complete t complete, // completion handler
void *context, // context (for handler)

) ;

Note that many drivers use the usb _control msg() function instead
(explained later).

Linux USB drivers
© Copyright 2006-2007, Free Electrons

(]

Y
r ~= T
http://free-electrons.com \ ”l ﬁ_ﬂ I 4 8

Sep 15, 2009

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_fill_bulk_urb
http://lxr.free-electrons.com/ident?i=usb_fill_control_urb
http://lxr.free-electrons.com/ident?i=usb_control_msg

Initializing isochronous urbs

No helper function. Has to be done manually by the driver.

for (i=0; i < USBVIDEO NUMSBUF; i++) {

int j, k;

struct urb *urb = uvd->sbuf[i].urb;

urb->dev = dev;

urb->context = uvd;

urb->pipe = usb rcvisocpipe(dev, uvd->video endp);

urb->interval = 1;

urb->transfer flags = URB ISO ASAP;

urb->transfer buffer = uvd->sbuf[i].data;

urb->complete = usbvideo IsocIrqg;

urb->number of packets = FRAMES PER DESC;

urb->transfer buffer length = uvd->iso packet len * FRAMES PER DESC;

for (j=k=0; Jj < FRAMES PER DESC; j++, k += uvd->iso packet len) {
urb->iso frame desc[j].offset = k;
urb->iso frame desc[j].length = uvd->iso packet len;

}

drivers/media/video/usbvideo/usbvideo.c example
@

Linux USB drivers

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
http://free-electrons.com Sep 15,2009

(]

http://free-electrons.com/
http://lxr.free-electrons.com/source/drivers/media/video/usbvideo/usbvideo.c

Allocating DMA buffers (1)

You can use the usb_buffer alloc() function
to allocate a DMA consistent buffer:

void *usb buffer alloc (
struct usb device *dev, //device

size t size, // buftfer size

gfp t mem flags, // kmalloc() flags

dma addr t *dma // (output) DMA address
) ; // of the buffer.
Example:

buf = usb buffer alloc(dev->udev,
count, GFP_ KERNEL, &urb->transfer dma);

L&

@
Linux USB drivers '
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , L .
° http://free-electrons.com Sep 15,2009 ”lh |,._2- I

50

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_buffer_alloc
http://lxr.free-electrons.com/ident?i=usb_buffer_alloc
http://lxr.free-electrons.com/ident?i=usb_device
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=gfp_t
http://lxr.free-electrons.com/ident?i=dma_addr_t
http://lxr.free-electrons.com/ident?i=usb_buffer_alloc

Allocating DMA buffers (2)

P To use these buffers, use the URB_NO TRANSFER DMA MAP
or URB_NO SETUP_ DMA MAP settings for urb->transfer flags to indicate
that urb->transfer dma or urb->setup dma are valid on submit.

P Examples:
urb->transfer flags |= URB_NO TRANSFER DMA MAP;
u->transfer flags |= URB _NO SETUP DMA MAP;

P Freeing these buffers:
void usb buffer free (
struct usb device *dev, //device

size t size, // buffer size
void *addr, // CPU address of buffer
dma addr t dma /l DMA address of buffer

*

[¥
Linux USB drivers

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , L N
http://free-electrons.com Sep 15,2009 ”lh |,._2|

(]

51

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=URB_NO_TRANSFER_DMA_MAP
http://lxr.free-electrons.com/ident?i=URB_NO_SETUP_DMA_MAP
http://lxr.free-electrons.com/ident?i=URB_NO_TRANSFER_DMA_MAP
http://lxr.free-electrons.com/ident?i=URB_NO_SETUP_DMA_MAP

Submitting urbs

After creating and initializing the urb

int usb submit urb(
struct urb *urb, // urb to submit
int mem flags); /l kmalloc () flags

mem flags is used for internal allocations performed by
usb submit urb(). Settings that should be used:

P GFP_ATOMIC: called from code which cannot sleep: a urb completion

handler, hard or soft interrupts. Or called when the caller holds a
spinlock.

P GPF NOIO: in some cases when block storage is used.

P GFP_KERNEL: in other cases.

Linux USB drivers
© Copyright 2006-2007, Free Electrons

@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
. http://free-electrons.com Sep 15, 2009 ”

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_submit_urb
http://lxr.free-electrons.com/ident?i=usb_submit_urb
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC
http://lxr.free-electrons.com/ident?i=GFP_NOIO
http://lxr.free-electrons.com/ident?i=usb_submit_urb

usb submit urb return values

usb submit urb /() immediately returns:

» 0:

» -ENOMEM:
» -ENODEV:
» -EPIPE:
» -EAGAIN:
» —-EFBIG:
» -EINVAL:

Request queued

Out of memory

Unplugged device

Stalled endpoint

Too many queued ISO transfers
Too many requested ISO frames

Invalid INT interval
More than one packet for INT

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Linux USB drivers
© Copyright 2006-2007, Free Electrons

o http://free-electrons.com

Sep 15, 2009

¢

53

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_submit_urb
http://lxr.free-electrons.com/ident?i=ENOMEM
http://lxr.free-electrons.com/ident?i=ENODEV
http://lxr.free-electrons.com/ident?i=EPIPE
http://lxr.free-electrons.com/ident?i=EAGAIN
http://lxr.free-electrons.com/ident?i=EFBIG
http://lxr.free-electrons.com/ident?i=EINVAL

Canceling urbs asynchronously

To cancel a submitted urb without waiting

P int usb unlink urb(struct urb *urb);
P Success: returns —-EINPROGRESS

P Failure: any other return value. It can happen:

» When the urb was never submitted
» When the has already been unlinked

P When the hardware is done with the urb,
even if the completion handler hasn't been called yet.

P The corresponding completion handlers will still be run
and will see urb->status == -ECONNRESET.

Linux USB drivers

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| e
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_unlink_urb
http://lxr.free-electrons.com/ident?i=EINPROGRESS
http://lxr.free-electrons.com/ident?i=ECONNRESET

Canceling urbs synchronously

To cancel an urb and wait for all completion handlers to complete
» This guarantees that the urb is totally idle and can be reused.
» void usb kill urb(struct urb *urb);
» Typically used in a disconnect () callback or close () function.
» Caution: this routine mustn't be called in situations
which can not sleep: in interrupt context,
in a completion handler, or when holding a spinlock.
See comments in drivers/usb/core/urb.c
in kernel sources for useful details.

¢ %
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , - 5 5
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_kill_urb
http://lxr.free-electrons.com/source/drivers/usb/core/urb.c

Initializing and submitting urbs - Summary

» urb structure fields can be initialized with helper functions
usb fill int urb(), usb fill bulk urb(),
usb fill control urb()

» Isochronous urbs have to be initialized by hand.

» The transfer flags field must be initialized
manually by each driver.

» Use the usb submit urb() function to queue urbs.

» Submitted urbs can be canceled using usb _unlink urb()
(asynchronous) or usb_kill urb() (synchronous).

¢ B
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, F ree E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , —_—— 5 6
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=urb
http://lxr.free-electrons.com/ident?i=usb_fill_int_urb
http://lxr.free-electrons.com/ident?i=usb_fill_bulk_urb
http://lxr.free-electrons.com/ident?i=usb_fill_control_urb
http://lxr.free-electrons.com/ident?i=usb_submit_urb
http://lxr.free-electrons.com/ident?i=usb_unlink_urb
http://lxr.free-electrons.com/ident?i=usb_kill_urb

Linux USB drivers

Linux USB communication
Completion handlers

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , L .
° http://free-electrons.com Sep 15,2009 ”lh |,._a- I

http://free-electrons.com/

When is the completion handler called?

The completion handler 1s called in interrupt context, in only 3 situations.
Check the error value in urb->status.

» After the data transfer successfully completed.
urb->status ==

» Error(s) happened during the transfer.
» The urb was unlinked by the USB core.

urb->status should only be checked from the completion handler!

¢ @
Linux USB drivers
© Copyright 2006-2007, Free Electrons
@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 5 8
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/

Transfer status (1)

Described in Documentation/usb/error-codes.txt

The urb is no longer “linked” in the system

» -ECONNRESET
The urb was unlinked by usb_unlink urb().

» -ENOENT
The urb was stopped by usb_kill urb().

» -ESHUTDOWN
Error in from the host controller driver. The device was disconnected from the
system, the controller was disabled, or the configuration was changed while the
urb was sent.

» -ENODEV
Device removed. Often preceded by a burst of other errors, since the hub
driver doesn't detect device removal events immediately.

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| e
° http://free-electrons.com Sep 15,2009 ”l m,._-a I 5 9

http://free-electrons.com/
http://lxr.free-electrons.com/source/Documentation/usb/error-codes.txt
http://lxr.free-electrons.com/ident?i=ECONNRESET
http://lxr.free-electrons.com/ident?i=usb_unlink_urb
http://lxr.free-electrons.com/ident?i=ENOENT
http://lxr.free-electrons.com/ident?i=usb_kill_urb
http://lxr.free-electrons.com/ident?i=ESHUTDOWN
http://lxr.free-electrons.com/ident?i=ENODEV

Transfer status (2)

Typical hardware problems with the cable or the device
(including its firmware)

» -EPROTO

Bitstuff error, no response packet received in time by the hardware,
or unknown USB error.

» -EILSEQ
CRC error, no response packet received in time, or unknown USB error.

» -EOVERFLOW

The amount of data returned by the endpoint was greater than either the
max packet size of the endpoint or the remaining buffer size. "Babble".

¢ *®
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , . 6 O
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=EPROTO
http://lxr.free-electrons.com/ident?i=EILSEQ
http://lxr.free-electrons.com/ident?i=EOVERFLOW

Transfer status (3)

Other error status values

» -EINPROGRESS
Urb not completed yet. Your driver should never get this value.

» -ETIMEDOUT

Usually reported by synchronous USB message functions
when the specified timeout was exceed.

» -EPIPE
Endpoint stalled. For non-control endpoints,
reset this status with usb _clear halt().

» -ECOMM

During an IN transfer, the host controller received data from an endpoint faster
than it could be written to system memory.

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| P
° http://free-electrons.com Sep 15,2000 ”l '-Ilﬁ-'al 61

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=EINPROGRESS
http://lxr.free-electrons.com/ident?i=ETIMEDOUT
http://lxr.free-electrons.com/ident?i=EPIPE
http://lxr.free-electrons.com/ident?i=usb_clear_halt
http://lxr.free-electrons.com/ident?i=ECOMM

Transfer status (4)

» -ENOSR
During an OUT transfer, the host controller could not retrieve data from
system memory fast enough to keep up with the USB data rate.

» -EREMOTEIO
The data read from the endpoint did not fill the specified buffer, and
URB _SHORT NOT OK was setin urb->transfer flags.

» -EXDEV
Isochronous transfer only partially completed.
Look at individual frame status for details.

» -EINVAL
Typically happens with an incorrect urb structure field
orusb submit urb() function parameter.

Linux USB drivers

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
http://free-electrons.com :
Sep 15, 2009

(]

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=ENOSR
http://lxr.free-electrons.com/ident?i=EREMOTEIO
http://lxr.free-electrons.com/ident?i=URB_SHORT_NOT_OK
http://lxr.free-electrons.com/ident?i=EXDEV
http://lxr.free-electrons.com/ident?i=EINVAL
http://lxr.free-electrons.com/ident?i=usb_submit_urb

Completion handler implementation

» Prototype:
void (*usb _complete t) (
struct urb *, // The completed urb
struct pt regs * //Register values at the time
// of the corresponding interrupt (if any)

) 7
» Remember you are in interrupt context:

» Do not execute call which may sleep (use GFP_ATOMIC, etc.).

» Complete as quickly as possible.
Schedule remaining work 1n a tasklet if needed.

[¥ & '
Linux USB drivers '

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , e 6 3
° http://free-electrons.com Sep 15,2009 ” 15 |,._-2

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC

Completion handler - Summary

» The completion handler is called in interrupt context.
Don't run any code which could sleep!

» Check the urb->status value in this handler,
and not before.

» Success: urb->status == 0

» Otherwise, error status described in
Documentation/usb/error-codes.txt.

¢ o>
Linux USB drivers '
© Copyright 2006-2007, Free Electrons
(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , L 6 4
° http://free-electrons.com Sep 15,2009 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/source/Documentation/usb/error-codes.txt

Linux USB drivers

Writing USB drivers

Supported devices

(.\, Free Electrons

Linux USB drivers
© Copyright 2006-2007, Free Electrons

Creative Commons Attribution-ShareAlike 2.5 license

Sep 15,2009

o http://free-electrons.com

”\| tﬁ&l |

635

http://free-electrons.com/

What devices does the driver support?

Or what driver supports a given device?

» Information needed by user-space, to find the right driver to
load or remove after a USB hotplug event.

» Information needed by the driver, to call the right probe ()
and disconnect () driver functions (see later).

Such information 1s declared in a usb_device_id structure
by the driver init () function.

¢ *®
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license . 6 6
© http://free-electrons.com Sep 15,2000 ”ll dﬂial

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_device_id

The usb device id structure (1)

Defined according to USB specifications and described in
include/linux/mod devicetable.h.

» ul6 match flags
Bitmask defining which fields in the structure are to be matched
against. Usually set with helper functions described later.

[__ulé idVendor, idProduct
USB vendor and product 1d, assigned by the USB-IF.

» ul6 bcdDevice lo,bcdDevice hi
Product version range supported by the driver,
expressed in binary-coded decimal (BCD) form.

¢ B
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, F ree E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , —_—— 67
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/mod_devicetable.h
http://lxr.free-electrons.com/ident?i=__u16
http://lxr.free-electrons.com/ident?i=__u16
http://lxr.free-electrons.com/ident?i=__u16

The usb device id structure (2)

[~ __u8 bbDeviceClass, bDeviceSubClass, bDeviceProtocol
Class, subclass and protocol of the device.
Numbers assigned by the USB-IF.
Products may choose to implement classes, or be vendor-specific. Device
classes specify the behavior of all the interfaces on a device.

[~ __u8 bInterfaceClass, bInterfaceSubclass,
bInterfaceProtocol

Class, subclass and protocol of the individual interface.
Numbers assigned by the USB-IF.

Interface classes only specify the behavior of a given interface.
Other interfaces may support other classes.

P kernel ulong t driver info

*

Linux USB drivers # !
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

, T
° http://free-electrons.com Sep 15,2000 ”l '.Ilﬁial 68

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=__u8
http://lxr.free-electrons.com/ident?i=__u8
http://lxr.free-electrons.com/ident?i=kernel_ulong_t

The usb device id structure (3)

» kernel ulong t driver info
Holds information used by the driver. Usually it holds a pointer to a
descriptor understood by the driver, or perhaps device flags.
This field 1s useful to differentiate different devices
from each other in the probe () function.

@

Linux USB drivers 4 !
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| P
° http://free-electrons.com Sep 15,2000 ”l '.Ilﬁ—‘al 69

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=kernel_ulong_t
http://lxr.free-electrons.com/search?filestring=&string=driver_info

Declaring supported devices (1)

USB_DEVICE (vendor, product)

» Creates ausb device id structure which can be used to
match only the specified vendor and product ids.

» Used by most drivers for non-standard devices.

USB DEVICE VER(vendor, product, lo, hi)
» Similar, but only for a given version range.

» Only used 11 times throughout Linux 2.6.18!

¢ B
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, F ree E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , —_—— 7 O
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=USB_DEVICE
http://lxr.free-electrons.com/ident?i=usb_device_id
http://lxr.free-electrons.com/ident?i=USB_DEVICE_VER

Declaring supported devices (2)

USB _DEVICE INFO (class, subclass, protocol)

» Matches a specific class of USB devices.
USB_INTERFACE INFO (class, subclass, protocol)
» Matches a specific class of USB interfaces.

The above 2 macros are only used in the implementations of standard
device and interface classes.

¢ @
Linux USB drivers
© Copyright 2006-2007, Free Electrons
@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 7 1
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=USB_DEVICE_INFO
http://lxr.free-electrons.com/ident?i=USB_INTERFACE_INFO

Declaring supported devices (3)

Created usb device_ id structures are declared
with the MODULE DEVICE TABLE () macro as in the below example:

/* Example from drivers/usb/net/catc.c */
static struct usb device id catc_id table [] = {
{ USB DEVICE(0x0423, Oxa) }, /* CATC Netmate, Belkin F5U011 */
{ USB DEVICE(0x0423, Oxc) }, /* CATC Netmate II, Belkin F5U111 */
{ USB DEVICE(0x08dl, 0xl) }, /* smartBridges smartNIC */
{ } /* Terminating entry */

}i
MODULE DEVICE TABLE(usb, catc id table);

Note that MODULE DEVICE TABLE () is also used
with other subsystems: pci, pcmcia, serio, isapnp, input...

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| .
° http://free-electrons.com Sep 15,2000 ”l '-Ilﬁ-'al 72

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_device_id
http://lxr.free-electrons.com/ident?i=MODULE_DEVICE_TABLE
http://lxr.free-electrons.com/source/drivers/usb/net/catc.c#934
http://lxr.free-electrons.com/ident?i=usb_device_id
http://lxr.free-electrons.com/ident?i=catc_id_table
http://lxr.free-electrons.com/ident?i=USB_DEVICE
http://lxr.free-electrons.com/ident?i=USB_DEVICE
http://lxr.free-electrons.com/ident?i=USB_DEVICE
http://lxr.free-electrons.com/ident?i=MODULE_DEVICE_TABLE
http://lxr.free-electrons.com/ident?i=MODULE_DEVICE_TABLE

Supported devices - Summary

» Drivers need to announce the devices they support
in usb_device_ id structures.

» Needed for user space to know which module to (un)load,
and for the kernel which driver code to execute, when a
device 1s inserted or removed.

» Most drivers use USB. DEVICE () to create the structures.

» These structures are then registered
with MODULE DEVICE TABLE (usb, xXxX).

¢ *®
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , . 7 3
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_device_id
http://lxr.free-electrons.com/ident?i=USB_DEVICE
http://lxr.free-electrons.com/ident?i=MODULE_DEVICE_TABLE

Linux USB drivers

Writing USB drivers
Registering a USB driver

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , L .
° http://free-electrons.com Sep 15,2009 ”lh |,._a- I

http://free-electrons.com/

The usb_driver structure

USB drivers must define a usb_driver structure:

» const char *name
Unique driver name. Usually be set to the module name.

P const struct usb device id *id table;
The table already declared with MODULE DEVICE TABLE().

» int (*probe) (struct usb _interface *intf,
const struct usb device id *id);
Probe callback (detailed later).

» void (*disconnect) (struct usb interface *intf);
Disconnect callback (detailed later).

¢ @
Linux USB drivers
© Copyright 2006-2007, Free Electrons
@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 7 5
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_driver
http://lxr.free-electrons.com/ident?i=MODULE_DEVICE_TABLE
http://lxr.free-electrons.com/ident?i=usb_interface
http://lxr.free-electrons.com/ident?i=usb_device_id
http://lxr.free-electrons.com/ident?i=usb_interface

Optional usb driver structure fields

» int (*suspend) (struct usb interface *intf,
pm message t message);
int (*resume) (struct usb interface *intf);
Power management: callbacks called before and after the USB core

suspends and resumes the device.

» void (*pre reset) (struct usb interface *intf);
void (*posE;reset) (struct usg;interface *intf);
Called by usb_reset composite device()
before and after it performs a USB port reset.

[¥
Linux USB drivers

*
@ © Copyright 2006-2007, Free Electrons i !
Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 7 6
http://free-electrons.com Sep 15,2009 ”|l,m|-‘2|

(]

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_interface
http://lxr.free-electrons.com/ident?i=usb_interface
http://lxr.free-electrons.com/ident?i=usb_interface
http://lxr.free-electrons.com/ident?i=usb_interface
http://lxr.free-electrons.com/ident?i=usb_reset_composite_device

Driver registration

Use usb_register () toregister your driver. Example:

/* Example from drivers/usb/input/mtouchusb.c */

static struct usb driver mtouchusb driver = {
.name = "mtouchusb",
.probe = mtouchusb probe,
.disconnect = mtouchusb disconnect,
.1d table = mtouchusb devices,

b7

static int init mtouchusb init(void)

{

dbg("%s - called", _ FUNCTION);
return usb register (&mtouchusb driver);

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

| L
° http://free-electrons.com Sep 15,2009 ”|'-1|ﬁ-'2|

77

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_register
http://lxr.free-electrons.com/source/drivers/usb/input/mtouchusb.c

Driver unregistration

Use usb_deregister () to register your driver. Example:
/* Example from drivers/usb/input/mtouchusb.c */

static void _ exit mtouchusb cleanup(void)
{
dbg("%s - called", _ FUNCTION);

4

usb deregister (&mtouchusb driver);

*
Linux USB drivers

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

N
) =
° http://free-electrons.com Sep 15,2009 ”|'11|ﬁ-2|

78

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_deregister
http://lxr.free-electrons.com/source/drivers/usb/input/mtouchusb.c
http://lxr.free-electrons.com/ident?i=usb_deregister

probe() and disconnect() functions

» The probe () function is called by the USB core to see if the
driver 1s willing to manage a particular interface on a device.

» The driver should then make checks on the information passed to
1t about the device.

P If it decides to manage the interface, the probe () function will
return 0. Otherwise, i1t will return a negative value.

» The disconnect () function is called by the USB core when a
driver should no longer control the device (even if the driver 1s
still loaded), and should do some clean-up.

¢ *®
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license . 7 9
© http://free-electrons.com Sep 15,2000 ”ll dﬂial

http://free-electrons.com/

Context: USB hub kernel thread

» The probe () and disconnect () callbacks are called in
the context of the USB hub kernel thread.

» So, it is legal to call functions which may sleep in these
functions.

» However, all addition and removal of devices is managed by
this single thread.

» Most of the probe function work should indeed be done when
the device 1s actually opened by a user. This way, this doesn't
impact the performance of the kernel thread in managing
other devices.

¢ *®
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license . 8 O
© http://free-electrons.com Sep 15,2000 ”ll dﬂial

http://free-electrons.com/

probe() function work

P In this function the driver should initialize local structures which it
may need to manage the device.

» In particular, it can take advantage of information it is given about
the device.

» For example, drivers usually need to detect endpoint addresses and
buffer sizes.

Time to show and explain examples in detail!

¢ @
Linux USB drivers
© Copyright 2006-2007, Free Electrons
@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 8 1
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/

usb_set_intfdata() / usb_get_intfdata()

static inline void usb _set intfdata (
struct usb interface *1ntf
void *data),

P Function used in probe () functions to attach collected device data to an
interface. Any pointer will do!

P Useful to store information for each device supported by a driver, without
having to keep a static data array.

P The usb get intfdata() function is typically used in the device open
functions to retrieve the data.

P Stored data need to be freed in disconnect () functions:
usb set intfdata(interface, NULL);

Plenty of examples are available in the kernel sources.

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
. http://free-electrons.com Sep 15,2009

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_set_intfdata
http://lxr.free-electrons.com/ident?i=usb_interface
http://lxr.free-electrons.com/ident?i=usb_set_intfdata

Linux USB drivers

Writing USB drivers
USB transfers without URBS

(.\, Free Electrons

Linux USB drivers
© Copyright 2006-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license

o http://free-electrons.com

Sep 15,2009

”\| tﬁ&l |

33

http://free-electrons.com/

Transfers without URBs

The kernel provides two usb _bulk msg()
and usb _control msg() helper functions that make it possible to
transfer simple bulk and control messages, without having to:

P Create or reuse an urb structure,
P Initialize it,
» Submit it,

» And wait for its completion handler.

¢ %
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , - 8 4
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=usb_bulk_msg
http://lxr.free-electrons.com/ident?i=usb_control_msg

Transfers without URBs - constraints

» These functions are synchronous and will make your code
sleep. You must not call them from interrupt context or with
a spinlock held.

®» You cannot cancel your requests, as you have no handle on
the URB used internally. Make sure your disconnect ()
function can wait for these functions to complete.

See the kernel sources for examples using these functions!

[¥) e
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, F ree E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license —_—— 8 5
© http://free-electrons.com Sep 15,2000 ”ll dﬂial

http://free-electrons.com/

USB device drivers - Summary

Module loading

P Declare supported devices (interfaces).

P Bind them to probe () and
disconnect () functions.

Supported devices are found

P probe() functions for matching
interface drivers are called.

P They record interface information and
register resources or services.

Devices are opened

P This calls data access functions registered
by the driver.

P URBs are initialized.

P Once the transfers are over, completion
functions are called.
Data are copied from/to user-space.

Devices are removed

P The disconnect () functions
are called.

P The drivers may be unloaded.

(.\, Free Electrons

(]

Linux USB drivers
© Copyright 2006-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license
http://free-electrons.com

*

Sep 15, 2009 " |J|' '-TI-:E,; | | 86

http://free-electrons.com/

Advice for embedded system developers

If you need to develop a USB device driver for an embedded
Linux system.

» Develop your driver on your GNU/Linux development host!

» The driver will run with no change on the target Linux

system (provided you wrote portable code!): all USB device
drivers are platform independent.

» Your driver will be much easier to develop on the host,
because of its flexibility and the availability of debugging
and development tools.

a‘r?
© Copyright 2006-2007, Free Electrons i f
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license -
(]

Linux USB drivers
http://free-electrons.com Sep 15,2000 ”ll dﬂial

http://free-electrons.com/

References

P Wikipedia's article on USB
http://en.wikipedia.org/wiki/Universal_Serial_Bus

P The USB drivers chapter in the Linux Device Drivers book:
http://lwn.net/Kernel/LDD3/ (Free License!)

P The Linux kernel sources (hundreds of examples, “Use the Source!”)
Browse them with http://Ixr.free-electrons.com.

P Linux USB project
http://www .linux-usb.org/

P Linux kernel documentation:
Documentation/usb/

Linux USB API (generated from kernel sources):
http://free-electrons.com/kerneldoc/latest/DocBook/usb/

P USB specifications:
http://www.usb.org/developers/docs/

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

, ——
° http://free-electrons.com Sep 15,2009 ”lII:'JI 88

http://free-electrons.com/
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://lwn.net/images/pdf/LDD3/ch13.pdf
http://lwn.net/Kernel/LDD3/
http://lxr.free-electrons.com/
http://www.linux-usb.org/
http://free-electrons.com/kerneldoc/latest/usb/
http://free-electrons.com/kerneldoc/latest/usb/
http://www.usb.org/developers/docs/

Linux USB drivers

Annex
Ethernet over USB

@
Linux USB drivers
© Copyright 2006-2007, Free Electrons

@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
. http://free-electrons.com Sep 15, 2009 ”

http://free-electrons.com/

Ethernet over USB (1)

If your device doesn't have Ethernet connectivity,
but has a USB device controller

» You can use Ethernet over USB through the g _ether USB
device (“gadget”) driver (CONFIG USB_GADGET)

» Of course, you need a working USB device driver. Generally
available as more and more embedded processors (well
supported by Linux) have a built-in USB device controller

» Plug-in both ends of the USB cable

[¥) e
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license L 9 0
© http://free-electrons.com Sep 15,2000 ”ll dﬂial

http://free-electrons.com/

Ethernet over USB (2)

» On the host, you need to have the usbnet module
(CONFIG USB_USBNET)

» Plug-in both ends of the USB cable. Configure both ends as
regular networking devices. Example:

P On the target device
modprobe g ether
ifconfig usb0 192.168.0.202
route add 192.168.0.200 dev usbO

P On the host
modprobe usbnet

ifconfig usb0 192.168.0.200
route add 192.168.0.202 dev usbO

» Works great on iPAQ PDAs!

Linux USB drivers
© Copyright 2006-2007, Free Electrons

@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
. http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Thanks

¢
» To the OpenOffice.org project, for their
presentation and word processor tools which To people who helped,
satisfied all my needs sent corrections or
suggestions:

» To http://openclipart.org project contributors for
their nice public domain clipart. Manish Katiyar

» To the members of the whole Free Software and
Open Source community, for sharing the best of
themselves: their work, their knowledge, their
friendship.

*

Linux USB drivers g !
© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

° http://free-electrons.com Sep 15,2000 ”|'T|ﬂ:2| | 92

http://free-electrons.com/
http://openoffice.org/
http://openclipart.org/

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

