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Purpose of this course

Learn how to implement
Linux drivers

for some of the most
complex USB devices!

Buy yours on http://www.thinkgeek.com/stuff/41/fundue.shtml!
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Best viewed with...

This document 1s best viewed with a recent PDF reader
or with OpenOffice.org itself!

» Take advantage of internal or external hyperlinks.
So, don’t hesitate to click on them!

» Find pages quickly thanks to automatic search
» Use thumbnails to navigate in the document in a quick way

If you’re reading a paper or HTML copy, you should get your
copy in PDF or OpenOffice.org format on
http://free-electrons.com/articles/linux-usb!
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Course prerequisites

» Fondue cheese

» Good knowledge about Linux device driver development.
Most notions which are not USB specific are covered
in our http://free-electrons.com/training/drivers course.

» To create real, working drivers: a good knowledge about the
USB devices you want to write drivers for. A good
knowledge about USB specifications too.
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USB drivers (1)

USB core drivers

» Architecture independent kernel subsystem.
Implements the USB bus specification.
Outside the scope of this training.

USB host drivers

» Different drivers for each USB control hardware.
Usually available in the Board Support Package.
Architecture and platform dependent.

Not covered yet by this training.
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USB drivers (2)

USB device drivers

» Drivers for devices on the USB bus.
The main focus of this course!

» Platform independent: when you use Linux on an embedded
platform, you can use any USB device supported by Linux
(cameras, keyboards, video capture, wi-f1 dongles...).

USB device controller drivers

» For Linux systems with just a USB device controller
(frequent in embedded systems).
Not covered yet by this course.
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USB gadget drivers

Drivers for Linux systems with a USB device controller

P Typical example: digital cameras.
You connect the device to a PC and see the camera
as a USB storage device.

» USB device controller driver:
Platform dependent. Supports the chip connecting to the USB bus.

P USB gadget drivers, platform independent. Examples:
Ethernet gadget: implements networking through USB
Storage gadget:. makes the host see a USB storage device
Serial gadget: for terminal-type of communication.

See Documentation/DocBook/gadget/ in kernel sources.
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USB host controllers - OHCI and UHCI

2 competing Host Control Device (HCD) interfaces

» OHCI - Open Host Controller Interface
Compagq's implementation adopted as a standard for USB 1.0 and 1.1
by the USB Implementers Forum (USB-IF).
Also used for Firewire devices.

» UHCI - Universal Host Controller Interface.
Created by Intel, insisting that other implementers use it and pay
royalties for it. Only VIA licensed UHCI, and others stuck to OHCI.

This competition required to test devices for both host controller standards!

For USB 2.0, the USB-IF insisted on having only one standard.
Linux USB drivers
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USB host controllers - EHCI

EHCI - Extended Host Controller Interface.
» For USB 2.0. The only one to support high-speed transfers.

» Each EHCI controller contains four virtual HCD implementations to
support Full Speed and Low Speed devices.

» On Intel and VIA chipsets, virtual HCDs are UHCI.
Other chipset makers have OHCI virtual HCDs.
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USB transfer speed

» Low-Speed: up to 1.5 Mbps
Since USB 1.0

» Full-Speed: up to 12 Mbps
Since USB 1.1

» Hi-Speed: up to 480 Mbps
Since USB 2.0

Linux USB drivers
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Linux USB drivers

Linux USB basics
USB devices
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USB descriptors

Operating system independent. Described in the USB specification

» Device - Represent the devices connected to the USB bus.
Example: USB speaker with volume control buttons.

» Configurations - Represent the state of the device.
Examples: Active, Standby, Initialization

» Interfaces - Logical devices.
Examples: speaker, volume control buttons.

PNV N N

» Endpoints - Unidirectional communication pipes.
Either IN (device to computer) or OUT (computer to device).
Linux USB drivers
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Control endpoints

» Used to configure the device, get information about it, send
commands to it, retrieve status information.

» Simple, small data transfers.

» Every device has a control endpoint (endpoint 0),
used to configure the device at insertion time.

» The USB protocol guarantees that the corresponding data
transfers will always have enough (reserved) bandwidth.
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Interrupt endpoints

» Transfer small amounts of data at a fixed rate
each time the hosts asks the device for data.

» Guaranteed, reserved bandwidth.

» For devices requiring guaranteed response time,
such as USB mice and keyboards.

» Note: different than hardware interrupts.
Require constant polling from the host.
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Bulk endpoints

» Large sporadic data transfers
using all remaining available bandwidth.

» No guarantee on bandwidth or latency.
» Guarantee that no data is lost.

» Typically used for printers, storage or network devices.
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Isochronous endpoints

» Also for large amounts of data.

» Guaranteed speed
(often but not necessarily as fast as possible).

» No guarantee that all data makes it through.

» Used by real-time data transfers (typically audio and video).
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The usb endpoint descriptor structure (1)

The usb_endpoint descriptor structure contains all the
USB-specific data announced by the device itself.
Here are useful fields for driver writers:

» u8 bEndpointAddress:
USB address of the endpoint.
It also includes the direction of the endpoint. You can use the
USB_ENDPOINT DIR MASK bitmask to tell whether this is a
USB _DIR INorUSB DIR OUT endpoint. Example:

1f ((endpoint->desc.bEndpointAddress &
USB_ENDPOINT DIR MASK) == USB DIR IN)
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The usb _endpoint descriptor structure (2)

» u8 bmAttributes:
The type of the endpoint. You can use the USB_ ENDPOINT XFERTYPE MASK
bitmask to tell whether the type is USB_ ENDPOINT XFER ISOC,
USB_ENDPOINT XFER BULK, USB_ENDPOINT XFER INT or
USB_ENDPOINT XFER CONTROL.

» u8 wMaxPacketSize:
Maximum size in bytes that the endpoint can handle. Note that if greater sizes are used,
data will be split in wMaxPacketSize chunks.

» u8 bInterval:
For interrupt endpoints, device polling interval (in milliseconds).

Note that the above names do not follow Linux coding standards.
The Linux USB implementation kept the original name from the USB specification
(http://www.usb.org/developers/docs/).
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Interfaces

» Each interface encapsulates a single high-level function (USB logical
connection). Example (USB webcam): video stream, audio stream,
keyboard (control buttons).

P One driver is needed for each interface!

» Alternate settings: each USB interface may have different parameter
settings. Example: different bandwidth settings for an audio interface.
The 1nitial state 1s in the first setting, (number 0).

P Alternate settings are often used to control the use of periodic endpoints,
such as by having different endpoints use different amounts of reserved
USB bandwidth. All standards-compliant USB devices that use
isochronous endpoints will use them in non-default settings.
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The usb interface structure (1)

USB interfaces are represented by the usb_interface structure.
It 1s what the USB core passes to USB drivers.

P struct usb host interface *altsetting;
List of alternate settings that may be selected for this interface, in
no particular order.
The usb_host interface structure for each alternate setting
allows to access the usb_endpoint descriptor structure
for each of 1ts endpoints:
interface->alsetting[i]->endpoint[j]->desc

P unsigned int num altsetting;
The number of alternate settings.
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The usb interface structure (2)

P struct usb host interface *cur altsetting;
The currently active alternate setting.

» int minor;
Minor number this interface 1s bound to.
(for drivers using usb register dev( ), described later).

Other fields 1n the structure shouldn't be needed by USB drivers.

Linux USB drivers
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Configurations

Interfaces are bundled into configurations.

» Configurations represent the state of the device.
Examples: Active, Standby, Initialization

» Configurations are described
with the usb _host config structure.

» However, drivers do not need to access this structure.
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Devices

» Devices are represented by the usb device structure.

» We will see later that several USB API functions need such a
structure.

» Many drivers use the interface to usbdev()
function to access their usb_device structure from the
usb interface structure they are given by the USB core.
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USB device overview

Configuration Active

Configuration Standby
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USB devices - Summary

» Hierarchy: device — configurations — interfaces — endpoints
» 4 different types of endpoints

» control: device control, accessing information, small transfers.
Guaranteed bandwidth.

» interrupt (keyboards, mice...): data transfer at a fixed rate.
Guaranteed bandwidth.

» bulk (storage, network, printers...): use all remaining
bandwidth. No bandwidth or latency guarantee.

P isochronous (audio, video...): guaranteed speed.
Possible data loss.
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Linux USB drivers

Linux USB basics

User-space representation
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usbview

" . USB Viewer

http://usbview.sourceforge.net [Terci Hos conler D58 Recamer e
. . Il --UHCI Host Controller | [Manufacturer: Logitech
Graphlcal dlsplay |Er UHCI Hos Ctroller S%%e%elé?ﬂ?fﬁ .(1|%W)
S Device Clags: 00{>if
Of the contents Of “UHCI Host Controller sz:gg SUabS;ass:(:SlOC)
Drevice Frotocol, 00
/proc/bus/usb/devices. T efaLt Enapaint Size: 8

"endor |d: 046d
Froduct Id: ¢80a
Revision Number: 2010

Config Number: 1
Number of Interfaces: 1
Attributes; a0
MaxFower Meeded; 50mA

Interface Mumber; O
Mame; usbhid
Alternate Mumber: 0
Class: 03(HID )
Sub Class: 1
Protocal: 2
MNumber of Endpoints: 1

Endpoint Address: &1
Direction: in
Attribute:; 8

Type: Int.

Maw Facket Size: 8
Interval; 10ms

Fefresh About.., Close
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Also displays information from /proc/bus/usb/devices:

> usbtree

\/: Bus 04.Port 1: Dev 1, Class=root hub, Driver=ehci hcd/6p, 480M
/: Bus 03.Port 1l: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M
/: Bus 02.Port 1l: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M

|  Port 1: Dev 7, If 0, Class=HID, Driver=usbhid, 1.5M
/: Bus 0l.Port 1: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M
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Linux USB communication
USB Request Blocks
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USB Request Blocks

» Any communication between the host and device is done
asynchronously using USB Request Blocks (urbs).

» They are similar to packets in network communications.
» Every endpoint can handle a queue of urbs.
» Every urb has a completion handler.

» A driver may allocate many urbs for a single endpoint, or
reuse the same urb for different endpoints.

See Documentation/usb/URB. txt in kernel sources.
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Urban life

Device , The lifecycle of an urb
Creation ~

driver
# USB core

Assigned (controller
to an endpoint

# driver)

Submitted Transfered
— .
yes to the USB core to the device

Y

can be < Notification at
reused? transfer completion

+ no

Deletion
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The urb structure (1)

Fields of the urb structure useful to USB device drivers:

P struct usb device *dev;
Device the urb is sent to.
» unsigned int pipe;
Information about the endpoint in the target device.

» int status;
Transfer status.

» unsigned int transfer flags;
Instructions for handling the urb.
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The urb structure (2)

» void * transfer buffer;
Buffer storing transferred data.
Must be created with kmalloc()!

P dma addr t transfer dma;
Data transfer buffer when DMA 1s used.

» int transfer buffer length;
Transfer buffer length.

P int actual length;
Actual length of data received or sent by the urb.

» usb complete t complete;
Completion handler called when the transfer i1s complete.

¢ %
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The urb structure (3)

» void *context;
Data blob which can be used in the completion handler.

P unsigned char *setup packet; (control urbs)
Setup packet transferred before the data in the transfer buffer.

» dma addr t setup dma; (control urbs)
Same, but when the setup packet is transferred with DMA.

P int interval; (isochronous and interrupt urbs)
Urb polling interval.

» int error count; (isochronous urbs)
Number of 1sochronous transfers which reported an error.
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The urb structure (4)

» int start frame; (isochronous urbs)
Sets or returns the initial frame number to use.

» int number of packets; (isochronous urbs)
Number of isochronous transfer buffers to use.

P struct usb iso packet descriptor (isochronous urbs)
iso frame desc[0];
Allows a single urb to define multiple 1sochronous transfers at once.
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Creating pipes

Functions used to initialize the pipe field of the urb structure:
» Control pipes
usb sndctrlpipe(),usb _rcvctrlpipe()

P Bulk pipes
usb sndbulkpipe(),usb _rcvbulkpipe()

P Interrupt pipes
usb sndintpipe(),usb_rcvintpipe()

P Isochronous pipes
usb sndisocpipe(),usb _rcvisocpipe()

Prototype

_ , send (out) receive (in) _ _ ,
unsigned int usb_[shg/rcv]}wtrl/bulk/lnt/lsoc]plpe (

struct usb device *dev, unsigned int endpoint);
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Creating urbs

P urb structures must always be allocated with the usb _alloc urb()
function.
That's needed for reference counting used by the USB core.

#include <linux/usb.h>

struct urb *usb alloc urb(
int iso packets, // Number of 1sochronous
/l packets the urb should contain.
// 0 for other transfer types
gfp t mem flags); //Standard kmalloc( ) flags

P Check that it didn't return NULL (allocation failed)!

» Typical example:
urb = usb alloc _urb(0, GFP_KERNEL);

-
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Freeing urbs

» Similarly, you have to use a dedicated function to release urbs:

void usb free urb(struct urb *urb);
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USB Request Blocks - Summary

» Basic data structure used in any USB communication.
» Implemented by the struct urb type.

» Must be created with the usb _alloc urb( ) function.
Shouldn't be allocated statically or with kmalloc ().

» Must be deleted with usb free urb().
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Linux USB communication
Initializing and submitting urbs
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Initializing interrupt urbs

void usb fill int urb (

struct urb *urb, // urb to be initialized

struct usb device *dev, //device to send the urb to

unsigned int pipe, // pipe (endpoint and device specific)
void *transfer buffer, //transfer buffer

int buffer length, // transfer buffer size

usb complete t complete, // completion handler

void *context, // context (for handler)

int interval // Scheduling interval (see next page)

) ;

P This doesn't prevent you from making more changes
to the urb fields before urb submission.

P The transfer flags field needs to be set by the driver.
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urb scheduling interval

For interrupt and 1sochronous transfers

» Low-Speed and Full-Speed devices:
the interval unit is frames (ms)

» Hi-Speed devices:
the interval unit is microframes (1/8 ms)

Linux USB drivers
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Initializing bulk urbs

Same parameters asinusb fill int urb(),
except that there is no interval parameter.

void usb fill bulk urb (

struct urb *urb, // urb to be 1nitialized

struct usb device *dev, //device to send the urb to
unsigned int pipe, // pipe (endpoint and device specific)
void *transfer buffer, /] transfer buffer

int buffer length, /[ transfer buffer size

usb complete t complete, //completion handler

void *context, /I context (for handler)

) ;
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Initializing control urbs

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Same parameters as inusb_fill bulk urb(),
except that there is a setup packet parameter.

void usb fill control urb (

struct urb *urb, // urb to be initialized
struct usb device *dev, //device to send the urb to
unsigned int pipe, // pipe (endpoint and device specific)

unsigned char *setup packet, //setup packet data
void *transfer buffer, //transfer buffer

int buffer length, // transfer buffer size
usb complete t complete, // completion handler
void *context, // context (for handler)

) ;

Note that many drivers use the usb _control msg( ) function instead
(explained later).
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Initializing isochronous urbs

No helper function. Has to be done manually by the driver.

for (i=0; i < USBVIDEO NUMSBUF; i++) {

int j, k;

struct urb *urb = uvd->sbuf[i].urb;

urb->dev = dev;

urb->context = uvd;

urb->pipe = usb rcvisocpipe(dev, uvd->video endp);

urb->interval = 1;

urb->transfer flags = URB ISO ASAP;

urb->transfer buffer = uvd->sbuf[i].data;

urb->complete = usbvideo IsocIrqg;

urb->number of packets = FRAMES PER DESC;

urb->transfer buffer length = uvd->iso packet len * FRAMES PER DESC;

for (j=k=0; Jj < FRAMES PER DESC; j++, k += uvd->iso packet len) {
urb->iso frame desc[j].offset = k;
urb->iso frame desc[j].length = uvd->iso packet len;

}

drivers/media/video/usbvideo/usbvideo.c example
@
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Allocating DMA buffers (1)

You can use the usb_buffer alloc() function
to allocate a DMA consistent buffer:

void *usb buffer alloc (
struct usb device *dev, //device

size t size, // buftfer size

gfp t mem flags, // kmalloc() flags

dma addr t *dma // (output) DMA address
) ; // of the buffer.
Example:

buf = usb buffer alloc(dev->udev,
count, GFP_ KERNEL, &urb->transfer dma);

L&
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Allocating DMA buffers (2)

P To use these buffers, use the URB_NO TRANSFER DMA MAP
or URB_NO SETUP_ DMA MAP settings for urb->transfer flags to indicate
that urb->transfer dma or urb->setup dma are valid on submit.

P Examples:
urb->transfer flags |= URB_NO TRANSFER DMA MAP;
u->transfer flags |= URB _NO SETUP DMA MAP;

P Freeing these buffers:
void usb buffer free (
struct usb device *dev, //device

size t size, // buffer size
void *addr, // CPU address of buffer
dma addr t dma /l DMA address of buffer

*
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Submitting urbs

After creating and initializing the urb

int usb submit urb(
struct urb *urb, // urb to submit
int mem flags); /l kmalloc () flags

mem flags is used for internal allocations performed by
usb submit urb( ). Settings that should be used:

P GFP_ATOMIC: called from code which cannot sleep: a urb completion

handler, hard or soft interrupts. Or called when the caller holds a
spinlock.

P GPF NOIO: in some cases when block storage is used.

P GFP_KERNEL: in other cases.
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usb submit urb return values

usb submit urb /() immediately returns:

» 0:

» -ENOMEM:
» -ENODEV:
» -EPIPE:
» -EAGAIN:
» —-EFBIG:
» -EINVAL:

Request queued

Out of memory

Unplugged device

Stalled endpoint

Too many queued ISO transfers
Too many requested ISO frames

Invalid INT interval
More than one packet for INT

(.\, Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
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Canceling urbs asynchronously

To cancel a submitted urb without waiting

P int usb unlink urb(struct urb *urb);
P Success: returns —-EINPROGRESS

P Failure: any other return value. It can happen:

» When the urb was never submitted
» When the has already been unlinked

P When the hardware is done with the urb,
even if the completion handler hasn't been called yet.

P The corresponding completion handlers will still be run
and will see urb->status == -ECONNRESET.
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Canceling urbs synchronously

To cancel an urb and wait for all completion handlers to complete
» This guarantees that the urb is totally idle and can be reused.
» void usb kill urb(struct urb *urb);
» Typically used in a disconnect () callback or close () function.
» Caution: this routine mustn't be called in situations
which can not sleep: in interrupt context,
in a completion handler, or when holding a spinlock.
See comments in drivers/usb/core/urb.c
in kernel sources for useful details.
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Initializing and submitting urbs - Summary

» urb structure fields can be initialized with helper functions
usb fill int urb(), usb fill bulk urb(),
usb fill control urb()

» Isochronous urbs have to be initialized by hand.

» The transfer flags field must be initialized
manually by each driver.

» Use the usb submit urb() function to queue urbs.

» Submitted urbs can be canceled using usb _unlink urb()
(asynchronous) or usb_kill urb() (synchronous).
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Linux USB communication
Completion handlers
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When is the completion handler called?

The completion handler 1s called in interrupt context, in only 3 situations.
Check the error value in urb->status.

» After the data transfer successfully completed.
urb->status ==

» Error(s) happened during the transfer.
» The urb was unlinked by the USB core.

urb->status should only be checked from the completion handler!

¢ @
Linux USB drivers
© Copyright 2006-2007, Free Electrons
@ Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , - 5 8
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁ-'2|


http://free-electrons.com/

Transfer status (1)

Described in Documentation/usb/error-codes.txt

The urb is no longer “linked” in the system

» -ECONNRESET
The urb was unlinked by usb_unlink urb().

» -ENOENT
The urb was stopped by usb_kill urb().

» -ESHUTDOWN
Error in from the host controller driver. The device was disconnected from the
system, the controller was disabled, or the configuration was changed while the
urb was sent.

» -ENODEV
Device removed. Often preceded by a burst of other errors, since the hub
driver doesn't detect device removal events immediately.
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Transfer status (2)

Typical hardware problems with the cable or the device
(including its firmware)

» -EPROTO

Bitstuff error, no response packet received in time by the hardware,
or unknown USB error.

» -EILSEQ
CRC error, no response packet received in time, or unknown USB error.

» -EOVERFLOW

The amount of data returned by the endpoint was greater than either the
max packet size of the endpoint or the remaining buffer size. "Babble".

¢ *®
Linux USB drivers
© Copyright 2006-2007, Free Electrons
(.\, Free E ’ectrons Creative Commons Attribution-ShareAlike 2.5 license , . 6 O
© http://free-electrons.com Sep 15,2000 ”|'-1|ﬁial


http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=EPROTO
http://lxr.free-electrons.com/ident?i=EILSEQ
http://lxr.free-electrons.com/ident?i=EOVERFLOW

Transfer status (3)

Other error status values

» -EINPROGRESS
Urb not completed yet. Your driver should never get this value.

» -ETIMEDOUT

Usually reported by synchronous USB message functions
when the specified timeout was exceed.

» -EPIPE
Endpoint stalled. For non-control endpoints,
reset this status with usb _clear halt().

» -ECOMM

During an IN transfer, the host controller received data from an endpoint faster
than it could be written to system memory.
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Transfer status (4)

» -ENOSR
During an OUT transfer, the host controller could not retrieve data from
system memory fast enough to keep up with the USB data rate.

» -EREMOTEIO
The data read from the endpoint did not fill the specified buffer, and
URB _SHORT NOT OK was setin urb->transfer flags.

» -EXDEV
Isochronous transfer only partially completed.
Look at individual frame status for details.

» -EINVAL
Typically happens with an incorrect urb structure field
orusb submit urb() function parameter.
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Completion handler implementation

» Prototype:
void (*usb _complete t) (
struct urb *, // The completed urb
struct pt regs * //Register values at the time
// of the corresponding interrupt (if any)

) 7
» Remember you are in interrupt context:

» Do not execute call which may sleep (use GFP_ATOMIC, etc.).

» Complete as quickly as possible.
Schedule remaining work 1n a tasklet if needed.

[ ¥ & '
Linux USB drivers '

© Copyright 2006-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , e 6 3
° http://free-electrons.com Sep 15,2009 ” 15 |,._-2



http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC

Completion handler - Summary

» The completion handler is called in interrupt context.
Don't run any code which could sleep!

» Check the urb->status value in this handler,
and not before.

» Success: urb->status == 0

» Otherwise, error status described in
Documentation/usb/error-codes.txt.
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Writing USB drivers

Supported devices
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What devices does the driver support?

Or what driver supports a given device?

» Information needed by user-space, to find the right driver to
load or remove after a USB hotplug event.

» Information needed by the driver, to call the right probe ()
and disconnect () driver functions (see later).

Such information 1s declared in a usb_device_id structure
by the driver init () function.
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The usb device id structure (1)

Defined according to USB specifications and described in
include/linux/mod devicetable.h.

» ul6 match flags
Bitmask defining which fields in the structure are to be matched
against. Usually set with helper functions described later.

[ __ulé idVendor, idProduct
USB vendor and product 1d, assigned by the USB-IF.

» ul6 bcdDevice lo,bcdDevice hi
Product version range supported by the driver,
expressed in binary-coded decimal (BCD) form.
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The usb device id structure (2)

[~ __u8 bbDeviceClass, bDeviceSubClass, bDeviceProtocol
Class, subclass and protocol of the device.
Numbers assigned by the USB-IF.
Products may choose to implement classes, or be vendor-specific. Device
classes specify the behavior of all the interfaces on a device.

[~ __u8 bInterfaceClass, bInterfaceSubclass,
bInterfaceProtocol

Class, subclass and protocol of the individual interface.
Numbers assigned by the USB-IF.

Interface classes only specify the behavior of a given interface.
Other interfaces may support other classes.

P kernel ulong t driver info

*
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The usb device id structure (3)

» kernel ulong t driver info
Holds information used by the driver. Usually it holds a pointer to a
descriptor understood by the driver, or perhaps device flags.
This field 1s useful to differentiate different devices
from each other in the probe ( ) function.
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Declaring supported devices (1)

USB_DEVICE (vendor, product)

» Creates ausb device id structure which can be used to
match only the specified vendor and product ids.

» Used by most drivers for non-standard devices.

USB DEVICE VER(vendor, product, lo, hi)
» Similar, but only for a given version range.

» Only used 11 times throughout Linux 2.6.18!
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Declaring supported devices (2)

USB _DEVICE INFO (class, subclass, protocol)

» Matches a specific class of USB devices.
USB_INTERFACE INFO (class, subclass, protocol)
» Matches a specific class of USB interfaces.

The above 2 macros are only used in the implementations of standard
device and interface classes.
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Declaring supported devices (3)

Created usb device_ id structures are declared
with the MODULE DEVICE TABLE () macro as in the below example:

/* Example from drivers/usb/net/catc.c */
static struct usb device id catc_id table [] = {
{ USB DEVICE(0x0423, Oxa) }, /* CATC Netmate, Belkin F5U011 */
{ USB DEVICE(0x0423, Oxc) }, /* CATC Netmate II, Belkin F5U111 */
{ USB DEVICE(0x08dl, 0xl) }, /* smartBridges smartNIC */
{ } /* Terminating entry */

}i
MODULE DEVICE TABLE(usb, catc id table);

Note that MODULE DEVICE TABLE () is also used
with other subsystems: pci, pcmcia, serio, isapnp, input...
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Supported devices - Summary

» Drivers need to announce the devices they support
in usb_device_ id structures.

» Needed for user space to know which module to (un)load,
and for the kernel which driver code to execute, when a
device 1s inserted or removed.

» Most drivers use USB. DEVICE () to create the structures.

» These structures are then registered
with MODULE DEVICE TABLE (usb, xXxX).
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Writing USB drivers
Registering a USB driver
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The usb_driver structure

USB drivers must define a usb_driver structure:

» const char *name
Unique driver name. Usually be set to the module name.

P const struct usb device id *id table;
The table already declared with MODULE DEVICE TABLE().

» int (*probe) (struct usb _interface *intf,
const struct usb device id *id);
Probe callback (detailed later).

» void (*disconnect) (struct usb interface *intf);
Disconnect callback (detailed later).
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Optional usb driver structure fields

» int (*suspend) (struct usb interface *intf,
pm message t message);
int (*resume) (struct usb interface *intf);
Power management: callbacks called before and after the USB core

suspends and resumes the device.

» void (*pre reset) (struct usb interface *intf);
void (*posE;reset) (struct usg;interface *intf);
Called by usb_reset composite device()
before and after it performs a USB port reset.

[ ¥
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Driver registration

Use usb_register () toregister your driver. Example:

/* Example from drivers/usb/input/mtouchusb.c */

static struct usb driver mtouchusb driver = {
.name = "mtouchusb",
.probe = mtouchusb probe,
.disconnect = mtouchusb disconnect,
.1d table = mtouchusb devices,

b7

static int  init mtouchusb init(void)

{

dbg("%s - called", _ FUNCTION );
return usb register (&mtouchusb driver);

@
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Driver unregistration

Use usb_deregister () to register your driver. Example:
/* Example from drivers/usb/input/mtouchusb.c */

static void _ exit mtouchusb cleanup(void)
{
dbg("%s - called", _ FUNCTION );

4

usb deregister (&mtouchusb driver);

*
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probe() and disconnect() functions

» The probe () function is called by the USB core to see if the
driver 1s willing to manage a particular interface on a device.

» The driver should then make checks on the information passed to
1t about the device.

P If it decides to manage the interface, the probe () function will
return 0. Otherwise, i1t will return a negative value.

» The disconnect () function is called by the USB core when a
driver should no longer control the device (even if the driver 1s
still loaded), and should do some clean-up.

¢ *®
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Context: USB hub kernel thread

» The probe () and disconnect () callbacks are called in
the context of the USB hub kernel thread.

» So, it is legal to call functions which may sleep in these
functions.

» However, all addition and removal of devices is managed by
this single thread.

» Most of the probe function work should indeed be done when
the device 1s actually opened by a user. This way, this doesn't
impact the performance of the kernel thread in managing
other devices.
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probe() function work

P In this function the driver should initialize local structures which it
may need to manage the device.

» In particular, it can take advantage of information it is given about
the device.

» For example, drivers usually need to detect endpoint addresses and
buffer sizes.

Time to show and explain examples in detail!
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usb_set_intfdata() / usb_get_intfdata()

static inline void usb _set intfdata (
struct usb interface *1ntf
void *data),

P Function used in probe () functions to attach collected device data to an
interface. Any pointer will do!

P Useful to store information for each device supported by a driver, without
having to keep a static data array.

P The usb get intfdata() function is typically used in the device open
functions to retrieve the data.

P Stored data need to be freed in disconnect () functions:
usb set intfdata(interface, NULL);

Plenty of examples are available in the kernel sources.
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Writing USB drivers
USB transfers without URBS
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Transfers without URBs

The kernel provides two usb _bulk msg()
and usb _control msg( ) helper functions that make it possible to
transfer simple bulk and control messages, without having to:

P Create or reuse an urb structure,
P Initialize it,
» Submit it,

» And wait for its completion handler.
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Transfers without URBs - constraints

» These functions are synchronous and will make your code
sleep. You must not call them from interrupt context or with
a spinlock held.

®» You cannot cancel your requests, as you have no handle on
the URB used internally. Make sure your disconnect ()
function can wait for these functions to complete.

See the kernel sources for examples using these functions!
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USB device drivers - Summary

Module loading

P Declare supported devices (interfaces).

P Bind them to probe () and
disconnect () functions.

Supported devices are found

P probe() functions for matching
interface drivers are called.

P They record interface information and
register resources or services.

Devices are opened

P This calls data access functions registered
by the driver.

P URBs are initialized.

P Once the transfers are over, completion
functions are called.
Data are copied from/to user-space.

Devices are removed

P The disconnect () functions
are called.

P The drivers may be unloaded.

(.\, Free Electrons
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Advice for embedded system developers

If you need to develop a USB device driver for an embedded
Linux system.

» Develop your driver on your GNU/Linux development host!

» The driver will run with no change on the target Linux

system (provided you wrote portable code!): all USB device
drivers are platform independent.

» Your driver will be much easier to develop on the host,
because of its flexibility and the availability of debugging
and development tools.
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References

P Wikipedia's article on USB
http://en.wikipedia.org/wiki/Universal_Serial_Bus

P The USB drivers chapter in the Linux Device Drivers book:
http://lwn.net/Kernel/LDD3/ (Free License!)

P The Linux kernel sources (hundreds of examples, “Use the Source!”)
Browse them with http://Ixr.free-electrons.com.

P Linux USB project
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Annex
Ethernet over USB
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Ethernet over USB (1)

If your device doesn't have Ethernet connectivity,
but has a USB device controller

» You can use Ethernet over USB through the g _ether USB
device (“gadget”) driver (CONFIG USB_GADGET)

» Of course, you need a working USB device driver. Generally
available as more and more embedded processors (well
supported by Linux) have a built-in USB device controller

» Plug-in both ends of the USB cable
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Ethernet over USB (2)

» On the host, you need to have the usbnet module
(CONFIG USB_USBNET)

» Plug-in both ends of the USB cable. Configure both ends as
regular networking devices. Example:

P On the target device
modprobe g ether
ifconfig usb0 192.168.0.202
route add 192.168.0.200 dev usbO

P On the host
modprobe usbnet

ifconfig usb0 192.168.0.200
route add 192.168.0.202 dev usbO

» Works great on iPAQ PDAs!
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