
Bootlin legacy Linux kernel training materials

Linux kernel initialization

This file is an old chapter of Bootlin’ embedded Linux kernel and driver development training
materials (https://bootlin.com/training/kernel/), which has been removed and is no
longer maintained.

PDF version and sources are available on
https://bootlin.com/doc/legacy/kernel-init/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 

https://bootlin.com/training/kernel/
https://bootlin.com/doc/legacy/kernel-init/


Rights to copy

© Copyright 2004-2018, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free:
▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

http://creativecommons.org/licenses/by-sa/3.0/legalcode


From Bootloader to user space

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Kernel Bootstrap (1)
How the kernel bootstraps itself appears in kernel building. Example on ARM (pxa
cpu) in Linux 2.6.36:
...

LD vmlinux
SYSMAP System.map
SYSMAP .tmp_System.map
OBJCOPY arch/arm/boot/Image
Kernel: arch/arm/boot/Image is ready
AS arch/arm/boot/compressed/head.o
GZIP arch/arm/boot/compressed/piggy.gzip
AS arch/arm/boot/compressed/piggy.gzip.o
CC arch/arm/boot/compressed/misc.o
CC arch/arm/boot/compressed/decompress.o
AS arch/arm/boot/compressed/head-xscale.o
SHIPPED arch/arm/boot/compressed/lib1funcs.S
AS arch/arm/boot/compressed/lib1funcs.o
LD arch/arm/boot/compressed/vmlinux
OBJCOPY arch/arm/boot/zImage
Kernel: arch/arm/boot/zImage is ready

...- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Kernel Bootstrap (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Bootstrap Code for Compressed Kernels

▶ Located in arch/<arch>/boot/compressed
▶ head.o

▶ Architecture specific initialization code.
▶ This is what is executed by the bootloader

▶ head-cpu.o (here head-xscale.o)
▶ CPU specific initialization code

▶ decompress.o, misc.o
▶ Decompression code

▶ piggy.<compressionformat>.o
▶ The kernel itself

▶ Responsible for uncompressing the kernel itself and jumping to its entry point.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Architecture-specific Initialization Code

▶ The uncompression code jumps into the main kernel entry point, typically located
in arch/<arch>/kernel/head.S, whose job is to:
▶ Check the architecture, processor and machine type.
▶ Configure the MMU, create page table entries and enable virtual memory.
▶ Calls the start_kernel function in init/main.c.
▶ Same code for all architectures.
▶ Anybody interested in kernel startup should study this file!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



start_kernel Main Actions

▶ Calls setup_arch(&command_line)
▶ Function defined in arch/<arch>/kernel/setup.c
▶ Copying the command line from where the bootloader left it.
▶ On arm, this function calls setup_processor (in which CPU information is

displayed) and setup_machine(locating the machine in the list of supported
machines).

▶ Initializes the console as early as possible (to get error messages)
▶ Initializes many subsystems (see the code)
▶ Eventually calls rest_init.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



rest_init: Starting the Init Process
static noinline void __init_refok rest_init(void)

__releases(kernel_lock)
{

int pid;

rcu_scheduler_starting();
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete(&kthreadd_done);

/*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
preempt_enable_no_resched();
schedule();
preempt_disable();

/* Call into cpu_idle with preempt disabled */
cpu_idle();

}
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



kernel_init

▶ kernel_init does two main things:
▶ Call do_basic_setup
▶ Once kernel services are ready, start device initialization (Linux 2.6.36 code excerpt):

static void __init do_basic_setup(void)
{

cpuset_init_smp();
usermodehelper_init();
init_tmpfs();
driver_init();
init_irq_proc();
do_ctors();
do_initcalls();

}
▶ Call init_post

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



do_initcalls

Calls pluggable hooks registered with the macros below. Advantage: the generic code
doesn’t have to know about them.
/*
* A "pure" initcall has no dependencies on anything else, and purely
* initializes variables that couldn't be statically initialized.
*
* This only exists for built-in code, not for modules.
*/

#define pure_initcall(fn) __define_initcall("0",fn,1)

#define core_initcall(fn) __define_initcall("1",fn,1)
#define core_initcall_sync(fn) __define_initcall("1s",fn,1s)
#define postcore_initcall(fn) __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)
#define arch_initcall(fn) __define_initcall("3",fn,3)
#define arch_initcall_sync(fn) __define_initcall("3s",fn,3s)
#define subsys_initcall(fn) __define_initcall("4",fn,4)
#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)
#define fs_initcall(fn) __define_initcall("5",fn,5)
#define fs_initcall_sync(fn) __define_initcall("5s",fn,5s)
#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn) __define_initcall("6",fn,6)
#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)
#define late_initcall(fn) __define_initcall("7",fn,7)
#define late_initcall_sync(fn) __define_initcall("7s",fn,7s)

Defined in include/linux/init.h
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



initcall example

From arch/arm/mach-pxa/lpd270.c (Linux 2.6.36)
static int __init lpd270_irq_device_init(void)
{

int ret = -ENODEV;
if (machine_is_logicpd_pxa270()) {

ret = sysdev_class_register(&lpd270_irq_sysclass);
if (ret == 0)

ret = sysdev_register(&lpd270_irq_device);
}
return ret;

}

device_initcall(lpd270_irq_device_init);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 

https://elixir.bootlin.com/linux/v2.6.36/source/arch/arm/mach-pxa/lpd270.c


init_post

▶ The last step of Linux booting
▶ First tries to open a console
▶ Then tries to run the init process, effectively turning the current kernel thread into

the user space init process.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



init_post Code: init/main.c

static noinline int init_post(void) __releases(kernel_lock) {
/* need to finish all async __init code before freeing the memory */
async_synchronize_full();
free_initmem();
mark_rodata_ro();
system_state = SYSTEM_RUNNING;
numa_default_policy();

current->signal->flags |= SIGNAL_UNKILLABLE;
if (ramdisk_execute_command) {

run_init_process(ramdisk_execute_command);
printk(KERN_WARNING "Failed to execute %s\n", ramdisk_execute_command);

}

/* We try each of these until one succeeds.
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine. */

if (execute_command) {
run_init_process(execute_command);
printk(KERN_WARNING "Failed to execute %s. Attempting defaults...\n", execute_command);

}
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel. See Linux Documentation/init.txt");
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Kernel Initialization Graph

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Kernel Initialization - Summary

▶ The bootloader executes bootstrap code.
▶ Bootstrap code initializes the processor and board, and uncompresses the kernel

code to RAM, and calls the kernel’s start_kernel function.
▶ Copies the command line from the bootloader.
▶ Identifies the processor and machine.
▶ Initializes the console.
▶ Initializes kernel services (memory allocation, scheduling, file cache...)
▶ Creates a new kernel thread (future init process) and continues in the idle loop.
▶ Initializes devices and execute initcalls.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 


