
Introduction
to the Unix command line

Training lab book

This training document is no longer being updated by Free
Electrons. It may be obsolete.

Introduction to the Unix command line
Training lab book

Free Electrons
http://free-electrons.com

1 © 2004-2016, Free Electrons, http://free-electrons.com, Creative Commons License

http://free-electrons.com/
http://free-electrons.com/

Introduction to the
Unix command line
Training lab book

About this document

This document is part of an embedded Linux training from Free Electrons.

You will find the whole training materials (slides and lab book)
on http://free-electrons.com/docs/command-line/

Copying this document

© 2004-2010, Free Electrons

This document is released under the terms of the http://creativecommons.org/licenses/by-
sa/3.0. This means you are free to download, distribute and even modify it, under certain
conditions.

Document updates and translations available on http://free-electrons.com/training/intro_unix_linux

Corrections, suggestions, contributions and translations are welcome!

Training setup

Instructions for the instructor, or for self training people. Otherwise, you can proceed to the next
page!

The training session can be performed on any GNU / Linux system, in particular on a live cdrom like
Knoppix, Fedora Core and Ubuntu.

Download the lab files directory from
http://free-electrons.com/labs/unix-linux-introduction-labs.tar.xz and extract the archives in a
convenient directory. In the labs, we will assume that this directory is /mnt/labs.

Disclaimer

Do not take the contents of the training lab files for granted!

Sardars are very nice, friendly and even clever people originating from India. I know some of them
in person, and I can certify this! This is probably why other people in India are not afraid of telling
kind jokes about them.

Microsoft is a perfectly honorable and trustworthy corporation, which only pursues the best interest
of individuals and society as a whole, in a truly altruistic way.

2 © 2004-2016, Free Electrons, http://free-electrons.com, Creative Commons License

http://free-electrons.com/labs/unix-linux-introduction-labs.tar.xz
http://free-electrons.com/training/intro_unix_linux
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0
http://free-electrons.com/docs/command-line/
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 1 – Basic file handling

Objective: getting familiar with basic file handling.

At the end of this lab, you will be able to

Display the list of files in a directory, and see their contents.
Perform simple operations: copying, renaming, removing, creating
links.
Modify access rights to files and directories
Et even get rid of Microsoft!

Setup

Go to the /mnt/labs/intro/files directory.

List of files

Display the list of files. How many files and directories are there?

Which is the hidden file?

List the oldest files first, and the most recent last.

Now, list the smallest files first, and the biggest last.

Accessing file contents

Display the contents of the answering­machine.txt file at once.

Now, display them with a tool which stops at the end of each page
and waits until you hit a key, to leave you time to read.

After reading a few pages, directly go to the part of the text
containing the planet word. If you use one of the 2 most popular
tools (suggested in the lecture), you can do this by using the “/”
command (inside the tool). Then, you can go to the next occurrence
of this word with the “n” command.

Once you reach the end of the file, look for the last occurrence of the
“BEEP” word, then continue upwards to the previous BEEP words, in
the same way.

Note that only the best of the 2 tools highlights the search word in
reverse video. If you don't observe this, it means you are not using
the best one!

Display the last 20 lines of the sardar3.txt file.

Searching through file contents

Look for trust in Microsoft.

Look for money in all the files in the directory (included in the
subdirectory).

Without typing again the full command, now look for Money.

Again without typing again the command, look for the same word,
whatever its case.

3

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

You will find the option that you need
in your course, or by consulting the ls
command manual page.

Enter your command without typing
the whole file name. Just type the
beginning of it, and hit the Tab key.

Note that you can find the same
commands in the vi editor too.
Though standard Unix commands are
independent, there is some
consistency between them!

Do it by editing the previous command.

file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20
file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Making changes on file and directory names

Modify the name of the .lightbulb file so that it is no longer hidden.

Get into the sardar/ directory. Check that you are in the right
directory. Move the sardar3.txt file from the parent directory to the
current directory.

Go back to the parent directory.

Get rid of Microsoft once and for all.

Create an archives directory and copy all the files in the working
directory into it, including the sardar subdirectory and all the files
it contains.

Symbolic links

Create symbolic links making the files in the sardar/ directory
appear in the current one too.

Once more, list the files in the current directory. Are links easy to
identify?

Remove the sardar/sardar3.txt file and see the impact on the file
list.

File access rights

Try to suppress the sardar/sardar1.txt file.

Display the access rights of the various files and try to understand
why you are not allowed to do it.

Once you understood, change these rights and remove this file.

Now, try to get into the safe directory. Modify access rights to be
able to do it.

Once you're inside, your adventure is not over yet. As you are only
interested in fortune, remove the ­o file which is also there. Good
luck!

4

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

To check the name of the current
directory, the pwd (“print working
directory”) command is your friend.

As these practical labs do not involve
several users at the same time, it is not
really possible to propose elaborate
exercises on file access rights. You will
have your own practice on real-life
GNU/Linux servers!

http://free-electrons.com/
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 2 – Elaborate commands

Objective: get familiar with redirections, pipes and task
control

At the end of these practical labs, you will be able to

Redirect the output of a command to a file
Implement pretty complex requests by cascading multiple Unix
commands.

Setup

Go to the /mnt/labs/intro/commands directory.

A first redirection

Use the history command to show all the commands that you
already typed.

Now, save the output of this command in a new history.txt file.

Concatenating files

Concatenate all the files in the sardar/ directory into the
sardar_power.txt file, still without leaving the current directory.

How many lines, words and characters are there in this new file?

Display all the lines in this file containing the singh keyword (case
insensitive)

Remove the sardar_power.txt file.

Using pipes

In only one command line, display again all the lines in the files in
the sardar/ directory which contain the singh keyword (case
insensitive).

Now, count the number of lines this represents, still in a single
command line.

Modify this command to only count the lines containing both santa
and singh, still in a case insensitive way.

Improve once more the command to count only lines containing
santa and singh, but not banta.

You have just discovered all the power of Unix pipes! These pipes let
you do exactly what you need to, from very simple basic commands.

That's all for the moment! Go on practicing commands introduced in
the lectures, on files available your GNU / Linux system.

5

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

It is sometimes useful to keep track of
typed commands. The history
command is definitely useful in this
case.

We will get the same results, but
without using an intermediate file.
This shows the power of pipes!

file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20
file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 3 – Text editors

Objective: get more familiar with text editors

At the end of these practical labs, you will be able to

Move a whole block of text, creating or removing a margin easily.
Edit text in a text only console, through the vi editor.

Setup

Go to the /mnt/labs/intro/text directory.

nedit features at a glance

Install nedit with sudo apt­get install nedit.

nedit is a user friendly yet powerful text editor.

First open the msreligion.txt file with nedit.

Review the contents of the various menus, and don't hesitate to try
the corresponding options and commands.

For example, toggle Incremental Search Line in the Preferences
menu. Use the new dialog to search for all the occurrences of the
Microsoft word (whatever its case). Easy, isn't it?

Now try Windows ­> Split Window (no hidden meaning this time).
You can work on 2 parts of the text at the same time. Get back to the
single pane mode.

Convert the whole first paragraph into uppercase.

Now, a very nice feature: holding down the [Ctrl] key, select the
contents of the first paragraph, but not the spaces on the left and
right hand sides.

Now press the middle mouse button (or both buttons if you don't
have any), and move your mouse! You see you can easily remove the
space margin on the left of the selection. You can even move the
selection over another part of the text and cover it!

Another way of achieving the same thing: in the same way, select the
space box on the left of the 5 next paragraphs. Hit [Ctrl][x], and
the empty space is gone!

Editing text with vi

Install vim with sudo apt­get install vim.

First, make sure you have the vi command summary page from the
training slides in front of you!

Open the declarations.h file with vi.

Moving the cursor

Note that you can use the arrow keys to move the cursor in the text.
Now, do the same thing without using the arrow keys.

Similarly, move one page forward and backwards without using the
Page Up and Page Down keys.

6

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

Use the Return key to go from one
occurrence to the next.

Unlike traditional Unix text editors,
nedit implements most of the now
universal keyboard shortcuts:
[Ctrl][c]: Copy
[Ctrl][v]: Paste
[Ctrl][x]: Cut
[Ctrl][z]: Undo
[Ctrl][a]: Select all

It takes time to get familiar with this
way of moving the cursor. However, as
you don't have to move your fingers
away from the center of the keyboard,
it is a very efficient way!

http://free-electrons.com/
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Inserting text

Go to the first line of the text.

Enter insertion mode and add /* at the beginning of the line. Exit
insertion mode when you are done.

Go to the end of the line by using a single command (and not by
moving the cursor character by character!)

Insert a space at the end of the line, followed by */. Exit insertion
mode again. Just as before with the end of the line, go back to the
first character of the line by using a single command.

Insert the below line before the first line:

long horn;

Exit insertion mode and place the cursor anywhere on the second
line. Start editing a new line right after the current line. Invent your
own funny C declaration!

Save your changes and exit vi.

Finding words

Open the pastacode.txt file with vi.

Use a command to go to the first occurrence of the code word.

Go to the next occurrence by using the n command. Once you reach
the end of the file, make a search backwards for the software word.
Similarly, go to one occurrence to the next.

Replacing words

Look for a particular word using the search commands. Modify the
entire word by using a single command.

Now, modify the next occurrences of this word by using the ".",
command, which repeats the latest edition.

Also remove entire words, or just a given character.

Find how to replace a single character by several characters.

Find how to delete one line in a single command. Find how to delete
10 lines, still in a single command.

Now, how would you replace the 5 next characters starting from the
cursor?

That's all for today! You can continue to try more vi features on your
own from your command summary sheet. The instructor can also
show you more.

7

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

You can now see that there are 2
modes in vi: insertion mode and
command mode.

Unlike traditional vi, vim (the vi
implementation you are using), vim
highlights all the instances of the
search words.

This "." command is definitely one of
the most useful commands in vi!

file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20
file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 4 – SSH

Objective: getting familiar with SSH

At the end of this lab, you will be able to

Use SSH for remote connection and remote command execution
Use keys and agents to simplify the connection process

Setup

Go to the /mnt/labs/intro/ssh directory.

Install the SSH server

By default, only the SSH client is installed. Start by installing the
SSH server by installing the openssh­server package.

Remote connection

Once the SSH server is installed on your neighbor machine, ask him
to create a new user account for you (using the adduser command).
Then connect to this account from your machine using SSH.

You can run commands as usual, but they are executed on the remote
machine.

Keys and agents

Create your own pair of private/public keys by using the command
ssh­keygen ­t dsa. Once created, you have a file ~/.ssh/id_dsa
which contains your private key (should never be sent to anybody, it's
private !) and ~/.ssh/id_dsa.pub which contains your public key
(which can be made available to others).

Transfer your public key to the remote host using ssh­copy­id. You
should now be able to log to the remote host by entering your SSH
passphrase instead of the password.

Make sure that the SSH agent is running by looking at the list of
running processes in the system for a process named ssh­agent. By
default, on Ubuntu, the SSH agent should be running.

Tell the SSH agent what your passphrase is by using the ssh­add
command. Once the SSH agent knows your passphrase, you should
be able to log in to a remote host which knows your public key
without entering any password. Very useful for scripting!

8

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 5 – Application development

Objective: Learn the basics of application development under
Linux

At the end of these practical labs, you will be able to

Use gcc to compile applications
Use third-party libraries
Use gdb to debug applications

Setup

The lab informations are present in the /mnt/labs/intro/appdev
directory.

Compile a simple application

Write a simple Hello World application in a .c file with your favorite
text editor. Then, compile this application:

gcc ­o myapp myapp.c

Finally, run your application:

./myapp

Simple, isn't it ? :-)

Write a Makefile

First, split your applications in two files, with the main() function in
file1.c calling another function in file2.c, for testing purposes.

Then, using the training slides and the make documentation, write a
simple Makefile that allows to compile this application. Make sure
that when one source file is modified, only this file gets recompiled.

Don't forget to implement a clean target in your Makefile.

Using a third-party library

We will use the Gtk library to develop a simple graphical application.
Under Ubuntu, the Gtk library is available in the libgtk2.0­0
package, and the development files in the libgtk2.0­dev package.
Install both of these packages. You can also install the libgtk2.0­
doc package to get the Gtk library documentation.

Gtk supports pkg­config, so if you run pkg­config ­­list­all to
see all the libraries supporting pkg­config, you should see gtk+­
2.0. Now, run the command “pkg­config ­­cflags ­­libs gtk+­
2.0”. It should display the compiler and linker flags needed to
compile a Gtk application.

Look at the source code provided in the gtk­helloworld.c file in the
lab informations directory. It implements a simple Hello World
application in Gtk, which displays a window with a button, and an
action associated to the button when it gets clicked.

Compile this application:
gcc ­o gtk­helloworld gtk­helloworld.c \

9

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20
file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

$(pkg­config ­­libs ­­cflags gtk+­2.0)

Debugging an application

Compile the crashing.c application:
gcc ­o crashing crashing.c

When you run this application, an error occurs: «Segmentation
fault». It means that the application made an invalid memory
access. No harm for the system thanks to memory protection, but we
still would like our application to work.

Recompile the application with the ­g gcc option, and run it inside
gdb. You will see when the application crashes and why it crashed.
Of course, in our example, the bug is very simple, but gdb can help
you similarly in more complicated situations.

Now, let's discover the mechanism of core files. A core file is
generated when an application crashes. This file contains an image
of the memory at the time of the crash, which allows later inspection
of the memory contents to understand the cause of the crash.

First, to enable the generation of core files, run:
ulimit ­c unlimited

Then, run the application again. Instead of « Segmentation fault »,
you should see « Segmentation fault (core dumped) », and a file
named «core» has been generated. Now, while the application is
already terminated, we can explore its state at the moment of the
crash using gdb:

gdb ­c core crashing

Finally, let's try gdb on another application, implemented in
looping.c. Compile this application (don't forget the ­g option!) and
run it: it loops forever, printing something on the screen.

While the application is running, attach gdb to it using:
gdb looping ­p PID

where PID is the process ID of the running looping process, that you
can find using ps or top. Or you can also run:

gdb looping ­p $(pidof looping)

Once attached, gdb automatically stops the application. By running
bt you can display the function call stack. The application is probably
running somewhere in the C library, inside the printf() C library
function, called by the showtests() function implemented in our
application.

As the printf() function is called at looping.c line 20, set a breakpoint
at this location:

break looping.c:20

Then, run cont to continue the execution of the program. It should
always immediately hit the breakpoint and halt at looping.c line 20.
If you run cont again, it will hit again the same breakpoint.

Once the breakpoint has been reached, you can use the list
command to display the source code around line 20. The source code
contains a loop that loops until tests[i].a == 0. You can print the
different variables :

print i
print tests[i].a

10

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

http://free-electrons.com/
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Because the bug is easy, you'll very quickly understand that we
forget to increment i in the loop!

11

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20
file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab 6 – Version control with CVS

Objective: get familiar with basic CVS features

At the end of these practical labs, you will be able to

Initialize a repository
Access a remote repository
Import an exiting project in a repository
Create and use a working copy
Handle conflicts

Setup

Go to the /mnt/labs/intro/cvs directory.

Working alone, locally

In your home directory, create a cvsrepo directory that will contain
the CVS repository, and initialize this repository using the cvs init
command.

Download the latest version of TSLib from its website
<http://tslib.berlios.de/>. TSLib is a library to handle touchscreen
panel events. We will use it as a sample project.

Uncompress the TSLib archive, and then import its source code
inside a tslib module in the CVS repository. Importing source code
in a CVS repository is done using the cvs import command.

Once TSLib is imported, create a working copy of the tslib module
using the cvs checkout command. You are now ready to work on
TSLib.

Make a simple modification to a source or documentation file, and
look at this modification using cvs diff. Once you are satisfied with
your modification, send it to your repository using cvs commit. A
new version of the modified files has been created, and you are now
sure that you can revert back to the previous version!

Working remotely

Now, agree with your neighbor on a repository location that you will
share. For example, you will keep using your local repository, and
your neighbor will access the same repository remotely through
SSH.

First of all, make sure that your neighbor can login to your machine.
Then, create a group named cvsusers (using the addgroup
command) and add yourself and your neighbor inside this group:

adduser yourself cvsusers
adduser neighbor cvsusers

Finally, change the group owner of the CVS repository to cvsusers,
and make sure that the group has writable access to the repository:

chgrp ­R cvsusers /home/user/cvsrepo
chmod ­R g+w /home/user/cvsrepo

These operations make sure that your neighbor has write access to
the repository. He should now be able to create a working copy of

12

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

http://tslib.berlios.de/
http://free-electrons.com/
http://free-electrons.com/

© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License© 2004-2008 Free Electrons, http://free-electrons.com Creative Commons License

your repository using:
cvs ­d :ext:user@host:/home/user/cvsrepo/ checkout tslib

Once done, make a modification in one of the working copy and
commit this modification. From the other working copy, use cvs
update to get the modification from the repository. Sharing changes
made easy!

Now, let's generate a conflict to see how they are resolved. To
generate a conflict, follow these steps:

● First, make sure the working copies of yourself and your
neighbor are properly updated and that no modifications are
pending (cvs diff should return nothing);

● On one working copy, make a simple modification in a file and
commit this modification;

● On the other working copy, without updating, make another
simple modification to the same file around the same location.
And commit this modification;

● It should deny the commit, saying that the file is not up-to-
date, so run cvs update to get the newer version.

● cvs update will try to merge the newer version with your
modifications, but will fail because the modifications occurred
at the same location in the same file, so it warns you that a
conflict occurred.

Now that the conflict is generated, you must solve it. Edit the file in
conflict and resolve the conflict by removing the conflict markers and
choosing the correct version or merging both versions. Once the
conflict is resolved, commit the final version.

13

Introduction to the
Unix command line
Training lab book

Introduction to the
Unix command line
Training lab book

mailto:user@host
file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20
file:///home/mike/intragit/training/resources/materials/legacy/http:%2F%2Ffree-electrons.com%20

