©

Block device driver ”
@ Free Electrons Training lab solutions book \ SR

Block device driver

Register a block device driver in the kernel
First, declare a constant for the size of our device:
#define MYBLK SIZE SECT (4 * 1024 * 2)

Then, declare a few global variables to store the major number that we will allocate, and the struct
gendisk pointer:

static struct gendisk *disk;
static unsigned char *data;

Create an empty request() operation:

static void myblk request(struct request queue *q)

{
}

Declare a block device operations structure with no operation, specifying only the block device
owner:

static struct block device operations myblk ops = {
.owner = THIS MODULE,

Y7

In the module initialization function, register the major number, allocate and initialize the gendisk
structure, create the queue and add the disk to the system:

major = register blkdev (0, "myblk");
if (major < 0)

{
printk (KERN_ERR "Couldn't register major, %d\n", major);
return major;

}

disk = alloc _disk(1);

if (! disk)

{

printk (KERN_ERR "Couldn't get a gendisk structure\n");
unregister blkdev(major, "myblk");
return -ENOMEM;

}

disk->major = major;

disk->first minor = 0;

disk->minors = 1;

disk->fops = & myblk ops;

strncpy(disk->disk _name, "testblk", sizeof(disk->disk_name));
set capacity(disk, MYBLK SIZE SECT);

disk->queue = blk init queue(myblk request, NULL);
if (! disk->queue)
{
printk (KERN_ERR "Couldn't allocate a queue\n");
put_disk(disk);
unregister blkdev(major, "myblk");

i ©2008 Free Electrons, http://free-electrons.com


http://free-electrons.com/

©

Block device driver ”
@ Free Electrons Training lab solutions book ; ; '

return -ENOMEM;
}

add_disk(disk);

In the module cleanup function, the necessary cleanup is done:

del gendisk(disk);

blk cleanup queue(disk->queue);
put disk(disk);

unregister blkdev(major, "myblk");

Handle I/O requests

To handle the I/O requests, it will be nice to have the definition of a constant for the size of a
sector in the kernel:

#define KERNEL SECTOR_SIZE 512

We also define a global pointer that will contain the address of the memory area used to store the
contents of the ramdisk:

static unsigned char *data;

In the module initialization function, we allocate the area of memory. This must be done before the
disk is added to the system using add disk(), because as soon as add _disk() is called, I/O requests
might be made on the block device:

data = vmalloc(MYBLK_SIZE SECT * KERNEL SECTOR_SIZE);

if (! data)

{
printk (KERN _ERR "Couldn't allocate memory for the device");
return -ENOMEM;

Of course, the error handling of the other initialization steps must be fixed accordingly.

In the module cleanup function, we don't forget to free this memory, after the disk has been
removed from the system:

vfree(data);

Now, we only have the request () operation to implement, in the simplest possible way. We loop
over all requests using elv_next_request () and for each of them, we make the memory copy in
the right direction depending on the request type (when rq data dir() is TRUE, it means that the
request is a write request), and notify the completion of the request using __ blk_end request().

static void myblk request(struct request_queue *q)

{
struct request *rq;
while ((rq = elv_next request(q)) != NULL)
{

if (rq data dir(rq))
memcpy (data + rqg->sector * KERNEL SECTOR SIZE, rq->buffer,
rg->current nr sectors * KERNEL SECTOR_SIZE);
else
memcpy (rq->buffer, data + rqg->sector * KERNEL SECTOR SIZE,

ii © 2008 Free Electrons, http://free-electrons.com


http://free-electrons.com/

»

©

Block device driver
@ Free Electrons Training lab solutions book \.

rg->current_nr_sectors * KERNEL_SECTOR SIZE);

__blk end request(rq, 0, rq->current nr sectors << 9);

}

Asynchronous operation
We declare a linked list and a spinlock protecting this list against concurrent accesses:

static LIST HEAD(req list);
static DEFINE SPINLOCK(req list lock);

We declare a timer that will trigger the execution of a function every second:

static struct timer list req timer;

In the initialization function, we initialize the timer and register it in the kernel:

init_timer(& req_timer);
req_timer.function = myblk timer func;
req_timer.expires jiffies + HZ;
add_timer (& req_timer);

In the cleanup function, we unregister the timer and make sure that it is not running anymore:

del timer sync(& req_timer);

We modify the request () operation so that requests are simply dequeued from the request queue
and added to our own linked list. The field queuelist of the request structure can be used for our
own purposes once the request is dequeued from the request queue. So, we use this queuelist
field to link each request in our linked list:

static void myblk request(struct request_queue *q)

{
struct request *rq;
while ((rq = elv_next_request(q)) != NULL)
{
blkdev_dequeue request(rq);
spin lock(& req list lock);
list add tail(& rqg->queuelist, & req list);
spin unlock(& req list lock);
}
}

Finally, we implement the function executed every second by the timer. This function loops over
the list of requests until it is empty. For each request, it loops over each segment and make the
necessary memory copies, and notifies the completion of the request. Finally, it rearms the timer
so that the function gets called again at the next second:

static void myblk timer func(unsigned long d)

{

struct request *rq;
while (! list_empty(& req list))
{

struct bio_vec *bvec;

iii ©2008 Free Electrons, http://free-electrons.com


http://free-electrons.com/

Block device driver
@ Free Electrons Training lab solutions book

©

struct req iterator iter;

spin_lock(& req list_lock);

rq = list_entry(req_list.next, struct request, queuelist);
list_del init(&rq->queuelist);

spin_unlock(& req list_lock);

rq_for each_segment (bvec, rq, iter)
{
if (rq_data dir(rq))
memcpy (data + rg->sector * KERNEL SECTOR_SIZE,
page_address (bvec->bv_page) + bvec->bv_offset,
bvec->bv_len);
else
memcpy (page_address (bvec->bv_page) + bvec->bv_offset,
data + rg->sector * KERNEL_ SECTOR_SIZE,
bvec->bv_1len);

rg->sector += bvec->bv_len / KERNEL SECTOR_SIZE;
}

blk_end request(rq, 0, rg->nr sectors << 9);

}

req_timer.expires = jiffies + HZ;
add_timer (& req_timer);

}

Complete source code

A complete solution can be found on
http://free-electrons.com/labs/solutions/linux/block/pyedur/myblk-v2.c

iv © 2008 Free Electrons, http://free-electrons.com


http://free-electrons.com/labs/solutions/linux/block/pyedur/myblk-v2.c
http://free-electrons.com/

