
© 2008-2009 Free Electrons, http://free-electrons.com Creative Commons License

Implementing a block device driver

Objective: Implement a working block device driver

After this lab, you will be able to

Learn how to register a block device driver in the kernel
Handle I/O requests in your driver
Add asynchronous handling of I/O requests

Setup

Go to the /mnt/labs/linux/block/ directory.

Extract the latest 2.6.30.x kernel sources in there, configure them
for the ARM architecture and with the configuration file supplied in
the data/ directory, and compile them.

Boot this kernel on your CALAO board, using the supplied nfsroot/
directory as root filesystem through NFS.

In the src/ directory of this root filesystem, a kernel module
skeleton is present.

Register a block device driver in the kernel

Using the block driver APIs presented in the training materials,
implement what is required to register a block device driver and a
single block device to the kernel.

For the moment, the request() operation can be left empty. You
should be able to see your block device in /sys/block/, and if you
read/write it using the dd command, it should block indefinitely
because the request() operation is not implemented yet. Make sure
that everything is properly cleaned up in the module exit function,
and try to load and unload your module a few times.

Handle I/O requests

For this simple block device driver, we are going to create a single
ramdisk. Using the vmalloc() allocator, you can allocate a fairly
large region of memory, of a few megabytes for example, in the
module init function, and free it in the module exit function: the
contents of our ramdisk will be kept until the module is unloaded.

Then, implement the request() operation in a synchronous way, by
simply using elv_next_request() and __blk_end_request().
memcpy() should be used to read and write to the memory region
allocated to store the ramdisk informations.

Once done, you should be able to test your block device with dd, but
also format it with mkfs.ext2, mount it, and use this new filesystem
as usual!

Asynchronous operation

Now, to test the asynchronous capabilities of the block driver API,
we are going to handle our requests in a function that is regularly
called by a kernel timer.

Using the timer API described in <linux/timer.h>, set up a timer

1

Block device drivers
Training lab book

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2008-2009 Free Electrons, http://free-electrons.com Creative Commons License

that runs a function every second. Create a linked list, protected
against concurrent accesses by a spinlock. In the request()
operation, dequeue the requests from the request queue, and add
them to the linked list. In the function triggered by the timer, handle
each request of the linked list, and call blk_end_request() upon
completion.

The block device should still work properly, but will of course be
slowed down quite a lot: the requests might be delayed until the next
call of the timer function, that is during at most one second.

2

Block device drivers
Training lab book

http://free-electrons.com/

