Block
device
drivers

Thomas Petazzoni
Free Electrons

© Copyright 2008-2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Sep 15, 2009,

Document sources, updates and translations:
http://free-electrons.com/docs/block-drivers

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/block-drivers

» After character devices and network devices, block devices
are another important device type of any system

» Used for the storage of application code and data, and user
data, they are often critical to the overall performance of the
system

» A dedicated subsystem, the block layer is in charge of
managing the block devices, together with hardware specific
device drivers

» This subsystem has been completely rewritten during the
2.5 development cycle. The API covered in these slides is
the one found in 2.6.x kernels.

» From userspace, block devices are accessed using device files,
usually stored in /dev/

» Created manually or dynamically by udev

» Most of the time, they store filesystems : they are not accessed
directly, but rather mounted, so that the contents of the filesystem
appears in the global hierarchy of files

» Block devices are also visible through the sysfs filesystem, in
the /sys/block/ directory

$ 1ls /sys/block/
dm-0 dm-2 1loop0O 1loop2 ram0 ram2 ram4 ram6é6 sda
dm-1 dm-3 loopl 1loop3 raml ram3 ramb5 ram?

Kernel v v
Virtual File System

Individualvfilesystems
(ext3, vfat, etc.)

i v

Buffer/page cache
v v
Block layer

» An user application can use a block device
» Through a filesystem, by reading, writing or mapping files

P Directly, by reading, writing or mapping a device file
representing a block device in /dev

» In both cases, the VFS subsystem in the kernel is the entry
point for all accesses

P A filesystem driver is involved if a normal file is being
accessed

» The buffer/page cache of the kernel stores recently read and
written portions of block devices

» It is a critical component for the performance of the system

5

Buffer/page cache
Block layer A .
Block Block
driver driver
»
/O scheduler
v v v
Block Block Block
driver driver driver
v v v v
Hardware

» The block layer allows block device drivers to receive 1/O
requests, and is in charge of 1/0 scheduling

» /O scheduling allows to

» Merge requests so that they are of greater size

» Re-order requests so that the disk head movement is as optimized
as possible

» Several I/O schedulers with different policies are available in
Linux.

» A block device driver can handle the requests before or after they
go through the 1/0 scheduler

» Most of the block device drivers are implemented below the I/O
scheduler, to take advantage of the 1/O scheduling

» Hard disk drivers, CD-ROM drivers, etc.

» For some drivers however, it doesn't make sense to use the 10
scheduler

» RAID and volume manager, like md

» The special loop driver

» Memory-based block devices

» Four I/O schedulers in current kernels
» Noop, for non-disk based block devices
» Anticipatory, tries to anticipate what could be the next accesses

P Deadline, tries to guarantee that an 1/O will be served within a
deadline

» CFQ, the Complete Fairness Queuing, the default scheduler, tries
to guarantee fairness between users of a block device

» The current scheduler for a device can be get and set in
/sys/block/<dev>/queue/scheduler

» CONFIG BLOCK

» Allows to selectively enable or disable the block layer. A
kernel without the block layer can be useful if using MTD
devices, storage over the network, or a filesystem in initramfs

» Only available if CONFIG EMBEDDED is set

» CONFIG IOSCHED NOOP, CONFIG IOSCHED AS,
CONFIG IOSCHED DEADLINE, CONFIG IOSCHED CFQ

P Allows to enable or disable different I/O schedulers. They can
be compiled as module, loaded and changed dynamically, on
a per-device basis.

» The block device layer is implemented in the block/ directory of
the kernel source tree

» This directory also contains the I/O scheduler code, in the
*-iosched.c files.

» A few simple block device drivers are implemented in
drivers/block/, including

» loop.c, the loop driver that allows to see a regular file as a block
device

P brd.c, a ramdisk driver

P nbd.c, a network-based block device driver

» A block device driver must implement a set of operations to
be registered in the block layer and receive requests from
the kernel

» A block device driver can directly implement this set of
operation. However, as in many areas in the kernel,
subsystems have been created to factorize common code of
drivers for devices of the same type

» SCSI devices

» PATA/SATA devices
» MMC/SD devices

» etc.

12

Generic block layer

.

.

.

.

Block SCSI IDE MMC
driver subsystem subsystem subsystem
SCSI libata usb IDE MMC/SD
driver subsystem storage driver driver
PATA/SATA
driver

13

» The first step in the initialization of a block device driver is the
registration of the major number

P int register blkdev(unsigned int major,
const char *name);

» Major can be 0, in which case it is dynamically allocated

P Once registered, the driver appears in /proc/devices with the
other block device drivers

» Of course, at cleanup time, the major must be unregistered

P void unregister blkdev(unsigned int major, const
char *name);

» The prototypes of these functions are in <linux/fs.h>

14

@

» The structure representing a single block device, defined in
<linux/genhd.h>

» int major, major of the device driver

P int first minor, minor of this device. A block device can
have several minors when it is partitionned

P int minors, number of minors. 1 for non-partitionable
devices

P struct block device operations *fops, pointerto the
list of block device operations

P struct request queue *queue, the queue of requests

P sector t capacity, size of the block device in sectors

@

» Allocate a gendisk structure
struct gendisk *alloc disk(int minors)

minors tells the number of minors to be allocated for this disk.
Usually 1, unless your device can be partitionned

» Allocate a request queue

struct request queue *blk init queue
(request fn proc *rfn, spinlock t *lock)

rfn IS the request function (covered later). 1ock is a optional
spinlock needed to protect the request queue against concurrent
access. If nurL, a default spinlock is used

» Initialize the gendisk structure
Fields major, first minor, fops, disk name and queue should

at the minimum be initialized
private data can be used to store a pointer to some private

information for the disk

» Set the capacity

void set capacity(struct gendisk *disk, sector_t size)

The size is a number of 512-bytes sectors. sector t is 64 bits
wide on 64 bits architectures, 32 bits on 32 bits architecture,
unless conric LBD (large block devices) has been selected

» Add the disk to the system
void add disk(struct gendisk *disk);

The block device can now be accessed by the system, so the
driver must be fully ready to handle I/O requests before calling

add disk(). I/O requests can even take place during the call to
add disk().

@

» Unregister the disk
void del gendisk(struct gendisk *gp);

» Free the request queue
void blk cleanup queue(struct request queue *);

» Drop the reference taken in alloc_disk()
void put disk(struct gendisk *disk);

» A set of function pointers

P open() and release(), called when a device handled by the
driver is opened and closed

P ioctl() for driver specific operations. unlocked ioctl() is
the non-BKL variant, and compat ioctl() for 32 bits
processes running on a 64 bits kernel

P direct access() required for XIP support, see
http://lwn.net/Articles/135472/

P media changed() and revalidate() required for removable
media support

P getgeo(), to provide geometry informations to userspace

http://lwn.net/Articles/135472/

@

static void foo request(struct request queue *q)
{
struct request *req;
while ((req = elv_next request(q)) != NULL) {
if (! blk fs request(req)) {
__blk end request(req, 1, reg->nr sectors << 9);
continue;

}

/* Do the transfer here */
__blk end request(req, 0, reg->nr sectors << 9);

» Information about the transfer are available in the struct request

P sector, the position in the device at which the transfer should be
made

P current nr_sectors, the number of sectors to transfer

P buffer, the location in memory where the data should be read or
written to

P rqg data dir(), the type of transfer, either READ or WRITE

» blk end request() Of blk end request() IS used to notify the
completion of a request. ~ blk end request() Must be used
when the queue lock is already held

miosk gevice_opesations

open()
release()
ioctl()
revalidate()
T getgeo()

first minor .
disk name
— sector
fops
current nr sectors
queue e

private data request fn buifgﬁ(
capacity List of requests LG _EhkE

<<-~—--’-‘ q

P blk queue bounce limit(queue, u64)
Tells the kernel the highest physical address that the device can
handle. Above that address, bouncing will be made.
BLK_BOUNCE HIGH, BLK BOUNCE ISA and BLK BOUNCE_ANY are
special values

» HIGH: will bounce if the pages are in high-memory

» ISA: will bounce if the pages are not in the ISA 16 Mb zone
» ANY: will not bounce

@

P blk queue max sectors(queue, unsigned int)
Tell the kernel the maximum number of 512 bytes sectors for
each request.

[blk queue max phys segments(queue, unsigned short)
blk queue max hw segments(queue, unsigned short)

Tell the kernel the maximum number of non-memory-adjacent
segments that the driver can handle in a single request (default
128).

P blk queue max segment size(queue, unsigned int)
Tell the kernel how large a single request segment can be

Request queue configuration (3)

[blk queue segment boundary(queue, unsigned long mask)
Tell the kernel about memory boundaries that your device cannot
handle inside a given buffer. By default, no boundary.

P blk queue dma alignement(queue, int mask)
Tell the kernel about memory alignment constraints of your
device. By default, 512 bytes alignment.

P blk queue hardsect size(queue, unsigned short max)
Tell the kernel about the sector size of your device. The requests
will be aligned and a multiple of this size, but the communication
Is still in number of 512 bytes sectors.

26

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

» A request is composed of several segments, that are contiguous
on the block device, but not necessarily contiguous in physical
memory

P A struct request IS in fact a list of struct bio

» A bio is the descriptor of an I/O request submitted to the block
layer. bios are merged together in a struct request by the 1/0O
scheduler.

» As a bio might represent several pages of data, it is composed of
several struct bio vec, each of them representing a page of
memory

bio

sector
nr_sectors

q
rq _disk

_

bi_sector

bi next
bi bdev
bi size
bi vcnt
bi io vec

bv_ page
bv len
bv offset

bv_ page
bv len
bv offset

_

bi sector
bi next
bi bdev
bi size
bi vcnt
bi io vec

bv_ page
bv_ len
bv offset

bv_ page
bv_ len
bv offset

0 / 4096 0 4096
0 / 4096 0 4096
bv _offset| bv page bv len bv _offset bv page bv len

bio
sector=1024
nr_sectors=32

bi sector=1024

bi_next
bi_size=8192
bi vent=2

bi_io_vec

>_

bi sector=1040
bi next

bi size=8192
bi vent=2
bi io vec

Block device

1024

@

» If you handle several requests at the same time, which is
often the case when handling them in asynchronous

manner, you must dequeue the requests from the queue :
void blkdev_dequeue request(struct request *req);

» If needed, you can also put a request back in the queue :
void elv_requeue request(struct request queue *queue,
struct request *req);

@

» Once the request is outside the queue, it's the responsibility of
the driver to process all segments of the request

» Either by looping until b1k end request() returns O

» Or by using the rq for each segment() macro

struct bio vec *bvec;
struct req iterator iter;
rq_for each segment(bvec, rq, iter)
{
/* rg->sector contains the current sector
page address(bvec->bv _page) + bvec->bv_offset points to the data
bvec->bv_len is the length */

rg->sector += bvec->bv_len / KERNEL SECTOR SIZE;
}

blk end request(rq, 0, rg->nr sectors << 9);

31

@

» The block layer provides an helper function to « convert » a

request to a scatter-gather list :

int blk rqg map sg(struct request queue *q,
struct request *rq,
struct scatterlist *sglist)

» sglist must be a pointer to an array of struct scatterlist, with
enough entries to hold the maximum number of segments in a
request. This number is specified at queue initialization using
blk queue max hw segments().

» The function returns the actual number of scatter gather list
entries filled.

@

» Once the scatterlist is generated, individual segments must be

mapped at addresses suitable for DMA, using :
int dma map sg(struct device *dev,
struct scatterlist *sglist,
int count,
enum dma data direction dir);

P dev is the device on which the DMA transfer will be made

» dir is the direction of the transfer (bMma TO DEVICE,
DMA FROM DEVICE, DMA BIDIRECTIONAL)

» The addresses and length of each segment can be found using
sg dma addr() and sg dma len() ON scatterlist entries.

@

» After the DMA transfer completion, the segments must be

unmapped, using

int dma unmap sg(struct device *dev,
struct scatterlist *sglist,
int hwcount,
enum dma data direction dir)

o Bedkier

MMC block device driver
CONFIG MMC BLOCK
drivers/mmc/card/{block,queue}.c

v

MMC Core
CONFIG MMC
drivers/mmc/core/

\

MMC Host Driver
CONFIG MMC ...
drivers/mmc/host/...

35

@

» For each host

P struct mmc_host *mmc alloc_host(int extra,
struct device *dev)

P Initialize struct mmc_host fields: caps, ops, max phys segs,
max hw segs, max blk size, max blk count, max req size

b int mmc_add host(struct mmc host *host)

» At unregistration

P void mmc remove host(struct mmc host *host)

P void mmc_ free host(struct mmc host *host)

@

» The mmc host->ops field points t0 a mmc_host ops Sstructure

» Handle an I/O request
void (*request) (struct mmc_host *host,
struct mmc request *req);

P Set configuration settings
void (*set ios)(struct mmc_ host *host,
struct mmc_ios *ios);

» Get read-only status
int (*get ro)(struct mmc host *host);

» Get the card presence status
int (*get cd) (struct mmc host *host);

Time to start Lab !
» Register your block device

» Create your request handling
function

» Make your request function
asynchronous

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

