
© 2007-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab – ALSA usage and programming

Objective: get familiar with sound manipulation with ALSA

After this lab, you will be able to

Play sound on a Linux system with ALSA
Define ALSA PCM devices
Use and manipulate PCM plugins
Record sound
Make other people in the room crazy!

Setup

Go to /home/<user>/felabs/sound/lab1

Edit the /etc/exports file to add the /home/<user>/felabs/sound/
lab1/nfsroot directory. See the training labs on http://free-
electrons.com/training/drivers for details on how to boot Linux on an
NFS exported directory.

Run a virtual PC

We are going to practice with ALSA sound on a virtual PC emulated
by QEMU.

Start the virtual machine by running the script found in the current
directory:

./run_qemu

Create ALSA device files

Find the name of the sound card emulated by QEMU.

Your virtual PC already contains all the libraries and software
needed to manipulate sound in this lab. However, the filesystem
doesn't have device files in /dev/snd yet, to let ALSA compatible
applications access the hardware through the alsa-lib library.

Using information from /proc, create the ALSA device files
corresponding to the sound card in the emulated PC.

Play sound samples

Go to the /root/samples directory and try to play some of the sound
samples. You can use the aplay command, which is a simple ALSA
compatible player, which mainly supports the playback of WAV files.
The nice thing about aplay is that it doesn't require to compile a
codec library to play WAV files.

Naming your sound card

Give a name to your soundcard, and play samples using this name
(aplay ­D name).

Sound mixing

Try to play multiple files in parallel and this way, test ALSA's
software mixing capabilities.

1

Embedded Linux Audio
Training lab book

See your lecture slides for details.

The driver for this sound card is
already loaded in your virtual system.

http://free-electrons.com/training/drivers
http://free-electrons.com/training/drivers
file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2007-2008 Free Electrons, http://free-electrons.com Creative Commons License

Now, try to play some files in parallel. Here's how you can do it:

for f in pig1.wav duck.wav cat.wav
> do
> aplay $f &
> done

You can also add a sleep 1 command before aplay to add a 1s pause
before playing a new sound. This should make the result sound a
little bit better.

Using other PCM plugins

Discard the sound output from your sound player.

Play a sound into a file, without playing it on the sound card.

Play a sound into a file and play it on the sound card at the same
time.

Tee PCM device

Create a PCM device that plays sound on the default sound card, and
dumps the audio into a file. This file should always have the same
name.

As opposed to using the tee plugin in the command line, this allows
to dump played audio into a file without having to specify the name
of this file in the command line.

Test that this device works fine.

ALSA PCM programming

We will develop a small program to play a WAV file.

First, install the toolchain available at http://free-
electrons.com/labs/tools/i686-unknown-linux-uclibc-gcc-4.3.2.tar.bz2.

Using the documentation of ALSA PCM API in the slides and at
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html, create a
program that:

1. Opens the default PCM device with snd_pcm_open()

2. Prepare a snd_pcm_hw_params structure

1. interleaved access mode
snd_pcm_hw_params_set_access()

2. 16 bits little endian format
snd_pcm_hw_params_set_format()

3. 2 channels
snd_pcm_hw_params_set_channels()

4. 44.100 Hz rate
snd_pcm_hw_params_set_rate_near()

5. Set a small period size, such as 32 frames
snd_pcm_hw_params_set_period_size_near()

3. Set the parameters of this snd_pcm_hw_params structure

4. Get the period size and allocate a buffer large enough to hold
that number of frames (the frame size is 4 bytes since we do
16 bits stereo audio)

2

Embedded Linux Audio
Training lab book

This is a convenient way of recording
an audio stream, for example.

Once this works, you will notice that
the tee and file plugins always
overwrite their target file. There is no
straightforward way of keeping
everything that was played from the
beginning.

http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
http://free-electrons.com/labs/tools/i686-unknown-linux-uclibc-gcc-4.3.2.tar.bz2.It
http://free-electrons.com/labs/tools/i686-unknown-linux-uclibc-gcc-4.3.2.tar.bz2.It
http://free-electrons.com/

© 2007-2008 Free Electrons, http://free-electrons.com Creative Commons License

5. Get the period time

6. Compute the number of loops to do to play 5 seconds of
audio: loops = 5000000 / periodtime

7. Loop for each period

1. Read a period (32 frames of 4 bytes) from the standard
input (file descriptor 0) using the read() function

2. Write to the PCM device using snd_pcm_writei(). If the
return value is ­EPIPE, call snd_pcm_prepare() to reset
the device

8. After the loop, drain the device with snd_pcm_drain() and
close it with snd_pcm_close()

To compile your application, do:

i686­unknown­linux­uclibc­gcc \
­­sysroot /home/<user>/felabs/sound/lab1/build/ \
­o play play.c ­lasound

To run you application, in Qemu, do:

cat cat.wav | ./play

3

Embedded Linux Audio
Training lab book

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2007-2008 Free Electrons, http://free-electrons.com Creative Commons License

Lab - Basic ALSA sound driver

Objective: Practice with the basic ALSA driver API

After this lab, you will

be able to compile your own kernel with ALSA support
practice a little bit with sound card registration.

Setup

Go to the /home/<user>/felabs/sound/lab2 directory.

Download the Linux 2.6.23 sources and extract them in the current
directory. Apply the Linux kernel patch in the data/ subdirectory.

Configure your kernel with the initial configuration file available in
the data/ subdirectory.

Open the kernel configuration interface:
> make xconfig

Enable ALSA support and just enable the below options (all of them
statically compiled into the kernel, not as modules):

OSS mixer API
OSS PCI (digital audio) API
OSS PCI (digital audio) API ­ Include plugin system
Verbose procfs contents
Verbose printk
Debug options
Support for the AK4531 codec (In the PCI devices submenu)

Compile your kernel.

Booting

You are going to boot your kernel on the filesystem in
felabs/sound/lab1/nfsroot, which contains everything you need to
play and record sound, while being reasonably small in size.

The hardware platform is a PC emulated by qemu. It emulates an
Ensoniq 1370 PCI sound card. You are going to experiment with a
driver for this card. What you play with the virtual card is eventually
played on your PC's hardware, and what you record from the virtual
card's microphone input comes from your PC's input line.

To make your experiments easier, the filesystem will be mounted
through NFS, and driver compiling will be done in the root
filesystem, boot visible on the target and on the development host.
Add /home/<user>felabs/sound/lab1/nfsroot to your
/etc/exports file, and restart your NFS server.

Have a look at the run_qemu command and run it. This should start a
virtual PC booting Linux and reaching a text console.

Compiling a driver

Creating a ALSA driver from scratch obviously takes a lot of time. To
keep the lab short enough, we will thus give you pieces of the final
driver, and you will take care of filling some gaps in the puzzle. It
would also take time to cover details about this specific hardware, so

4

Embedded Linux Audio
Training lab book

Don't hesitate to ask your instructor if
you need any help with Kernel
configuration and compiling.

The root filesystem was created with
scratchbox, and just contains BusyBox
and some sound playing tools
(alsaplayer, alsa-utils), and libraries
(alsa-base, libvorbis, libogg and
ncurses).

http://free-electrons.com/

© 2007-2008 Free Electrons, http://free-electrons.com Creative Commons License

low-level functions taking care of accessing hardware registers will
also be given to you.

On your host, go to nfsroot/src. This directory contains the driver
which you will complete, as well as a Makefile to compile it.

Run the make command to compile your driver.

In the virtual machine, go to the /src/ directory. This is the same
directory as nfsroot/src on your host. Load your driver and check
that it is successfully loaded:

> insmod my1370.ko
> lsmod

Check whether there are any ALSA sound cards on your system.

PCI and module initialization

In the code of your driver, explicit the list of supported PCI devices,
here a sound card with the 0x1274 vendor id and the 0x5000 product
id.

Add the missing hooks to the module init and exit functions, to
register your driver, with its supported devices and its probe and
remove functions, which you will find in the code.

Reload your module, and check that you now see an ALSA sound
card on your system.

Adding PCM devices to your card

Modify the snd_audiopci_probe function to add support for the
mixer and the 2 PCM devices in your sound card, for which
initialization code is already available.

Notice that /proc/asound/cards lists your new card.

Testing your card

Using the /samples directory, use the aplay or alsaplayer
commands to make sure that playback works fine. You can even try
to copy Ogg/Vorbis files to your root filesystem (easy with NFS), and
play them with alsaplayer.

Using the alsamixer command, make sure the mixer works fine.

Using the arecord command, test that recording works fine.

Download a free Ogg/Vorbis file from the Internet, play it, and try to
record at the same time, to check the full-duplex capabilities of your
card.

5

Embedded Linux Audio
Training lab book

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

