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Training contents

» Floating point and ABIs

» Floating point support on ARM Linux
» Different ABIs
» Thumb mode

» Introduction to Thumb
» Thumb and ARM code together

» Interworking on your system

» Other ARM extensions
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Floating point support (1)

» Many ARM platforms do not have an hardware floating point unit
P Two solutions exists to emulate floating point

P Hard float: let userspace binaries use floating point instructions, and emulate
them 1n the kernel using the “illegal instruction” exception

P Soft float: add the emulation code in userspace at compile time, using gcc
-msoft-float option

P The solution traditionally used in Linux is hard float, with FPA instructions

» However, hard float is very slow due to the exception handling and context
switch.
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Floating point support (2)

» In the Linux kernel, two floating point emulators are available

» NWFPE, NetWinder Floating Point Emulator
CONFIG_FPE_NWFPE

P FastFPE, faster that NWFPE, but not fully complete and not

recommended for scientific applications
CONFIG _FPE FASTFPE

» Support for VFP is also available

» VFP is a coprocessor extension for floating point computations
available in ARM10, ARMI11 and Cortex processor families

-
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Mixing hard and soft float

» Due to ABI calling conventions differences, it was not possible
with the traditional ABI to mix hard and soft float code in
userspace

» An application and all its libraries have to be compiled either for
hard float or soft float

P One of the reason for which floating point emulation in the kernel
was preferred over soft float

» Binaries could take advantage of floating point capable
hardware immediately, with no recompiling.

» Fortunately, the new EABI solves this issue
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EABI (1)

» EABI is a new standardized ABI for the ARM platforms

» It has several advantages

» Ability to mix hard and soft float code, so that general code
can be compiled with soft float and several versions of
optimized libraries can be provided using hard float

» Allows to link with code generated by other compilers and
provided by other vendors

» Has integrated support for Thumb interworking
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EABI (2)

Other changes coming from EABI

P Structure packing and alignment rules change : no minimum alignement in
structures

P Stack alignment on function entry is 8 bytes instead of 4 bytes
P Alignment of 64 bits types is 8 bytes instead of 4
P System call interface

P The system call number was passed as part of the swi instruction

P The kernel had to read and decode the swi instruction, polluting the data
cache with instructions

P Now, the system call number is passed in r7

P 64 bits function arguments are aligned to an even-number register instead
of using the next available pair
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EABI in gcc and Linux

» Support for EABI was added in GCC 4.1.0

P Buildroot allows to select the target ABI of the toolchain
» Support for EABI was added in Linux 2.6.16

» CONFIG AEABI

P Compiles EABI support in the Linux kernel, so that applications can
be compiled with the new EABI

P CONFIG OABI_ COMPAT

P In an EABI-able kernel,
provides compatibility with old ABI userspace binaries

P Works only for non-Thumb binaries
P Running an EABI binary on a non-EABI kernel doesn't work
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Two instruction sets

» Default mode on ARM : instructions on 32 bits

» With the ARMVA4T ISA, a new execution mode 1s added,
with 16 bits instructions : Thumb mode

» ARMVAT ISA is used in ARM7TDMI, ARM9TDMI,
ARM7x0T, ARMO9xxT

» In the ARMVSTE ISA, improvements to ease the switch
between ARM and Thumb modes

» 16 bits instructions can be useful to increase code density,
and decrease the overall code size
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Instruction encoding

Thumb instruction

Major opcode denoting
format 3
move/compare/add/sub
with immediate value

Minor opcode denoting
add instruction

Destination and source register

Immediate value

31

%

Condition: always

ARM instruction

(.\, Free Electrons
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Compiling a thumb program

[ )
» Any ARM toolchain is able to produce binaries using the
Thumb instruction set
» Using the —-mthumb option of the GNU C Compiler
int bar(int c, int d) 0000000 <bar>:
{ 0: b580 push {r7, 1lr}
return c + d; 2: b082 sub sp, #8
} 4: afoo0 add r7, sp, #0
6: 143b adds r3, r7, #4
int foo(int a, int b) 2 lesh A Lt
{ c: 6019 str rl, [r3, #0]
a += 3; e: 1d3b adds r3, r1, #4
b -= 2; 10: lc3a adds r2, r7, #0
return bar(b, a); 12: 6819 ldr rl, [r3, #0]
) [...
[ ¥
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Branches on two instructions

» In Thumb mode, branch and link instructions take two instructions

0000000 <bar>:
0: b580

[...]

00000020 <foo>:
[-..]

[...]

de: f7ff fffe bl 0 <bar>

push {r7, 1lr}

» A.7.1.17 BL, BLX instructions in Thumb mode
« These Thumb instructions must always occur in the pairs

described above »
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Size gains

P Size gains on a small, non-representative example

int bar(int c, int d)
{

return c + 4;

}

int foo(int a, int b)
{

a += 3;

b -= 2;

) S

S sizediff test.arm.o test.thumb.o

text data bss
124 0 0
96 0 0
-28 0 0

dec hex filename

124 7c test.arm.o
96 60 test.thumb.o
-28 -1C +/-

return bar(b, a);
| I\ IIIIIIIIIIIIIIIIIIIIII

» 28 bytes reduction, 22% code size reduction
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Thumb and ARM code together
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Thumb and ARM code together (2)

P For several reasons, one might need to combine ARM and Thumb code
together

P Performance-critical code in ARM
P Libraries compiled in ARM mode
P The ARM achitecture provides instructions to switch back and forth

P bx and b1lx instructions, the lowest bit of the address set allowing to
select Thumb or ARM mode

P 1dr and 1dm instructions that load the pc register can also be used

P T bit (bit 5) in the CPSR controls the mode
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Interworking

» The GNU C Compiler provides a transparent mechanism
called interworking to allow the mix of ARM and Thumb
code

» Interworking-enabled code can be generated using
-mthumb-interwork

» The toolchain must be interwork capable

P —-enable-interwork binutils configuration option

P —-enable-interwork gcc configuration option
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Interworking (2)

@

000081c4 <main>: .

8lcd: b580 push  {r7, lr} Function main (),

81cé6: af00 add r7, sp, #0 . .

o compiled in Thumb,

8lcc: £005 £fb30 bl d830 < f f thumb> .

o — o0 Fron_huE calls foo () in ARM

mode.

00008220 <foo>:

8220: ela0c00d mov ip, sp

8224: €92dd800 push {fp, ip, 1lr, pc}

[..-]

8254: el2fffle bx 1r

00004830 < foo from thumb>:

d830: 4778 bx pc GCC generated
d832: 46c0 nop (mov r8, r8)
wrappers around

foo () to switch to
ARM mode

0000d834 <_ foo_change to_arm>:
d834: eaffea79 b 8220 <foo>
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Interworking (3)

» Two thumb “b’ instructions

P 1lr = pc + (immediate << 12)

P pc = 1r + (immediate)
lr = addr of next instruction | 1

» Switch to ARM mode

P pc has the lowest bit to 0, switch to ARM

» Call the correct function

» Return to Thumb mode at the calling site

P 1r has the lowest bit to 0, switch to Thumb

£f005 £fb30
bl d830 <__foo_from;thumb>

4478 bx pc

eaffea79 b 8220 <foo>

el2fffle bx 1lr
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Interworking on your system
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Several solutions

» ARM and Thumb mode of the kernel and userspace are
independent

» Can use a ARM kernel with a Thumb mode userspace, the
system call ABI remains the same

» Full Thumb userspace, including the libc

®» uClibc doesn't seem to support Thumb mode correctly, at
least gcc 4.2 1s not able to compile it

» Thumb userspace, excluding the libc

» The solution chosen for our experiments
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Generating the toolchain

» Binutils and gcc
» --enable-interwork
» Uclibc
» —-mthumb-interwork
» USE BX configuration option
» Automated using Buildroot
> BR2 INTERWORKING SUPPORT

» Using a Free-Electrons contributed patch, not merged in the

official Buildroot version yet

e 25
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Compiling your applications

» Manually
» Add the -mthumb option to the compilation command line
» CFLAGS+=-mthumb

» Automated using Buildroot
» BR2 THUMB BINARIES

P Using a Free-Electrons contributed patch, not merged in the official
Buildroot version yet

P Using Scratchbox

P Need to integrate the new toolchain inside Scratchbox

P Follow http://www.scratchbox.org/wiki/ForeignToolchains
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Jazelle and Thumb 2

P Jazelle, allows to execute some Java bytecode in hardware

P Need a Jazelle-aware Java Virtual Machine
» Support in ARMS5vTEJ, ARMv6 and ARMv7
P http://www.arm.com/products/esd/jazelle_home.html

P Thumb 2 extends the traditional 16 bits Thumb instruction set with 32 bits
Instruction

P Goal is to achieve similar density as Thumb code with performance similar
to ARM code

P Support in ARMv6T2 (ARM1156T2) and ARMv7 (Cortex). Cortex-M3

has only Thumb 2 support.

P http://www.arm.com/products/CPUs/archi-thumb2.html
P Linux 2.6.26 adds support for Thumb 2 userspace.
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ThumbEE

» ThumbEE stands for Thumb Execution Environment

» Adds more instructions designed for runtime generated code,
for example by JIT compilation (automatic null pointer checks
or array boundary checks, branch to handlers, etc.)

P http://www.arm.com/pdfs/JazelleRCTWhitePaper_final1-0_.pdf
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