ARM Linux specifics

ARM Linux specifics

Thomas Petazzoni / Michael Opdenacker
Free Electrons
http://free-electrons.com/

Created with OpenOffice.org 2.x

®
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 3.0 license ,
© http://free-electrons.com Sep 15, 2009 :

http://free-electrons.com/
http://free-electrons.com/
http://openoffice.org/

Rights to copy

[¥)
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

@creative
commons

COMMONS DEETD

Attribution — ShareAlike 3.0 © Copyright 2004-2008
You are free Free Electrons
® to copy, distribute, display, and perform the work feedback @free-electrons.com

© to make derivative works .
Document sources, updates and translations:

http://free-electrons.com/docs/arm-linux

® to make commercial use of the work
Under the following conditions

Attribution. You must give the original author credit. Corrections. sugeestions. contributions and
Share Alike. If you alter, transform, or build upon this work, » SUg8 ’

@ you may distribute the resulting work only under a license translations are welcome!
identical to this one.

® For any reuse or distribution, you must make clear to others the
license terms of this work.

© Any of these conditions can be waived if you get permission from
the copyright holder.

Your fair use and other rights are in no way affected by the above.

License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© http://free-electrons.com Sep 15, 2009

http://free-electrons.com/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://free-electrons.com/docs/arm-linux

Best viewed with...

This document 1s best viewed with a recent PDF reader
or with OpenOffice.org itself!

» Take advantage of internal or external hyperlinks.
So, don’t hesitate to click on them!

» Find pages quickly thanks to automatic search
» Use thumbnails to navigate in the document in a quick way

If you’re reading a paper or HTML copy, you should get your
copy in PDF or OpenOffice.org format on
http://free-electrons.com/training/devtools!

Py) .
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license , H '
[}

3

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/
http://openoffice.org/
http://openoffice.org/
http://free-electrons.com/training/devtools

Training contents

» Floating point and ABIs

» Floating point support on ARM Linux
» Different ABIs
» Thumb mode

» Introduction to Thumb
» Thumb and ARM code together

» Interworking on your system

» Other ARM extensions

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

© http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Floating point and ABIs

Floating point and ABIs

®
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 3.0 license v
© http://free-electrons.com Sep 15, 2009 :

http://free-electrons.com/

Floating point support (1)

» Many ARM platforms do not have an hardware floating point unit
P Two solutions exists to emulate floating point

P Hard float: let userspace binaries use floating point instructions, and emulate
them 1n the kernel using the “illegal instruction” exception

P Soft float: add the emulation code in userspace at compile time, using gcc
-msoft-float option

P The solution traditionally used in Linux is hard float, with FPA instructions

» However, hard float is very slow due to the exception handling and context
switch.

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Floating point support (2)

» In the Linux kernel, two floating point emulators are available

» NWFPE, NetWinder Floating Point Emulator
CONFIG_FPE_NWFPE

P FastFPE, faster that NWFPE, but not fully complete and not

recommended for scientific applications
CONFIG _FPE FASTFPE

» Support for VFP is also available

» VFP is a coprocessor extension for floating point computations
available in ARM10, ARMI11 and Cortex processor families

-

@
ARM Linux specifics

© Copyright 2004-2008, Free Electrons !' l
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license ,

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Mixing hard and soft float

» Due to ABI calling conventions differences, it was not possible
with the traditional ABI to mix hard and soft float code in
userspace

» An application and all its libraries have to be compiled either for
hard float or soft float

P One of the reason for which floating point emulation in the kernel
was preferred over soft float

» Binaries could take advantage of floating point capable
hardware immediately, with no recompiling.

» Fortunately, the new EABI solves this issue

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

EABI (1)

» EABI is a new standardized ABI for the ARM platforms

» It has several advantages

» Ability to mix hard and soft float code, so that general code
can be compiled with soft float and several versions of
optimized libraries can be provided using hard float

» Allows to link with code generated by other compilers and
provided by other vendors

» Has integrated support for Thumb interworking

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

EABI (2)

Other changes coming from EABI

P Structure packing and alignment rules change : no minimum alignement in
structures

P Stack alignment on function entry is 8 bytes instead of 4 bytes
P Alignment of 64 bits types is 8 bytes instead of 4
P System call interface

P The system call number was passed as part of the swi instruction

P The kernel had to read and decode the swi instruction, polluting the data
cache with instructions

P Now, the system call number is passed in r7

P 64 bits function arguments are aligned to an even-number register instead
of using the next available pair

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

EABI in gcc and Linux

» Support for EABI was added in GCC 4.1.0

P Buildroot allows to select the target ABI of the toolchain
» Support for EABI was added in Linux 2.6.16

» CONFIG AEABI

P Compiles EABI support in the Linux kernel, so that applications can
be compiled with the new EABI

P CONFIG OABI_ COMPAT

P In an EABI-able kernel,
provides compatibility with old ABI userspace binaries

P Works only for non-Thumb binaries
P Running an EABI binary on a non-EABI kernel doesn't work

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Introduction to Thumb

Introduction to Thumb

[¥)
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

© http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Two instruction sets

» Default mode on ARM : instructions on 32 bits

» With the ARMVA4T ISA, a new execution mode 1s added,
with 16 bits instructions : Thumb mode

» ARMVAT ISA is used in ARM7TDMI, ARM9TDMI,
ARM7x0T, ARMO9xxT

» In the ARMVSTE ISA, improvements to ease the switch
between ARM and Thumb modes

» 16 bits instructions can be useful to increase code density,
and decrease the overall code size

Py) .
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license , H ' 1 3
®)|

http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Instruction encoding

Thumb instruction

Major opcode denoting
format 3
move/compare/add/sub
with immediate value

Minor opcode denoting
add instruction

Destination and source register

Immediate value

31

%

Condition: always

ARM instruction

(.\, Free Electrons

ARM Linux specifics

© Copyright 2004-2008, Free Electrons

Creative Commons Attribution-ShareAlike 3.0 license

http://free-electrons.com

Sep 15,2009

http://free-electrons.com/

Compiling a thumb program

[)
» Any ARM toolchain is able to produce binaries using the
Thumb instruction set
» Using the —-mthumb option of the GNU C Compiler
int bar(int c, int d) 0000000 <bar>:
{ 0: b580 push {r7, 1lr}
return c + d; 2: b082 sub sp, #8
} 4: afoo0 add r7, sp, #0
6: 143b adds r3, r7, #4
int foo(int a, int b) 2 lesh A Lt
{ c: 6019 str rl, [r3, #0]
a += 3; e: 1d3b adds r3, r1, #4
b -= 2; 10: lc3a adds r2, r7, #0
return bar(b, a); 12: 6819 ldr rl, [r3, #0]
) [...
[¥

(.\, Free Electrons

(]

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
Creative Commons Attribution-ShareAlike 3.0 license

Sep 15,2009

http://free-electrons.com

http://free-electrons.com/

Branches on two instructions

» In Thumb mode, branch and link instructions take two instructions

0000000 <bar>:
0: b580

[...]

00000020 <foo>:
[-..]

[...]

de: f7ff fffe bl 0 <bar>

push {r7, 1lr}

» A.7.1.17 BL, BLX instructions in Thumb mode
« These Thumb instructions must always occur in the pairs

described above »

[¥
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license 1 6
@

http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Size gains

P Size gains on a small, non-representative example

int bar(int c, int d)
{

return c + 4;

}

int foo(int a, int b)
{

a += 3;

b -= 2;

) S

S sizediff test.arm.o test.thumb.o

text data bss
124 0 0
96 0 0
-28 0 0

dec hex filename

124 7c test.arm.o
96 60 test.thumb.o
-28 -1C +/-

return bar(b, a);
| I\ IIIIIIIIIIIIIIIIIIIIII

» 28 bytes reduction, 22% code size reduction

(.\, Free Electrons

ARM Linux specifics
© Copyright 2004-2008, Free Electrons

Creative Commons Attribution-ShareAlike 3.0 license

http://free-electrons.com

Sep 15,2009

http://free-electrons.com/

Thumb and ARM code together

Thumb and ARM code together

Interworking
®
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 3.0 license ,
© http://free-electrons.com Sep 15, 2009 :

http://free-electrons.com/

Thumb and ARM code together (2)

P For several reasons, one might need to combine ARM and Thumb code
together

P Performance-critical code in ARM
P Libraries compiled in ARM mode
P The ARM achitecture provides instructions to switch back and forth

P bx and b1lx instructions, the lowest bit of the address set allowing to
select Thumb or ARM mode

P 1dr and 1dm instructions that load the pc register can also be used

P T bit (bit 5) in the CPSR controls the mode

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Interworking

» The GNU C Compiler provides a transparent mechanism
called interworking to allow the mix of ARM and Thumb
code

» Interworking-enabled code can be generated using
-mthumb-interwork

» The toolchain must be interwork capable

P —-enable-interwork binutils configuration option

P —-enable-interwork gcc configuration option

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Interworking (2)

@

000081c4 <main>: .

8lcd: b580 push {r7, lr} Function main (),

81cé6: af00 add r7, sp, #0 . .

o compiled in Thumb,

8lcc: £005 £fb30 bl d830 < f f thumb> .

o — o0 Fron_huE calls foo () in ARM

mode.

00008220 <foo>:

8220: ela0c00d mov ip, sp

8224: €92dd800 push {fp, ip, 1lr, pc}

[..-]

8254: el2fffle bx 1r

00004830 < foo from thumb>:

d830: 4778 bx pc GCC generated
d832: 46c0 nop (mov r8, r8)
wrappers around

foo () to switch to
ARM mode

0000d834 <_ foo_change to_arm>:
d834: eaffea79 b 8220 <foo>

© [
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license
|

° http://free-electrons.com Sep 15, 2009

http://free-electrons.com/

Interworking (3)

» Two thumb “b’ instructions

P 1lr = pc + (immediate << 12)

P pc = 1r + (immediate)
lr = addr of next instruction | 1

» Switch to ARM mode

P pc has the lowest bit to 0, switch to ARM

» Call the correct function

» Return to Thumb mode at the calling site

P 1r has the lowest bit to 0, switch to Thumb

£f005 £fb30
bl d830 <__foo_from;thumb>

4478 bx pc

eaffea79 b 8220 <foo>

el2fffle bx 1lr

®
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 3.0 license , 22
© http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Interworking on your system

Interworking on your system

®
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 3.0 license ,
© http://free-electrons.com Sep 15, 2009 :

http://free-electrons.com/

Several solutions

» ARM and Thumb mode of the kernel and userspace are
independent

» Can use a ARM kernel with a Thumb mode userspace, the
system call ABI remains the same

» Full Thumb userspace, including the libc

®» uClibc doesn't seem to support Thumb mode correctly, at
least gcc 4.2 1s not able to compile it

» Thumb userspace, excluding the libc

» The solution chosen for our experiments

Py) .
ARM Linux specifics
© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license , H '
[}

24

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Generating the toolchain

» Binutils and gcc
» --enable-interwork
» Uclibc
» —-mthumb-interwork
» USE BX configuration option
» Automated using Buildroot
> BR2 INTERWORKING SUPPORT

» Using a Free-Electrons contributed patch, not merged in the

official Buildroot version yet

e 25

@
ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

© http://free-electrons.com Sep 15,2009

http://free-electrons.com/

Compiling your applications

» Manually
» Add the -mthumb option to the compilation command line
» CFLAGS+=-mthumb

» Automated using Buildroot
» BR2 THUMB BINARIES

P Using a Free-Electrons contributed patch, not merged in the official
Buildroot version yet

P Using Scratchbox

P Need to integrate the new toolchain inside Scratchbox

P Follow http://www.scratchbox.org/wiki/ForeignToolchains

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

° http://free-electrons.com Sep 15, 2009 " H '

-

http://free-electrons.com/
http://www.scratchbox.org/wiki/ForeignToolchains

Jazelle and Thumb 2

P Jazelle, allows to execute some Java bytecode in hardware

P Need a Jazelle-aware Java Virtual Machine
» Support in ARMS5vTEJ, ARMv6 and ARMv7
P http://www.arm.com/products/esd/jazelle_home.html

P Thumb 2 extends the traditional 16 bits Thumb instruction set with 32 bits
Instruction

P Goal is to achieve similar density as Thumb code with performance similar
to ARM code

P Support in ARMv6T2 (ARM1156T2) and ARMv7 (Cortex). Cortex-M3

has only Thumb 2 support.

P http://www.arm.com/products/CPUs/archi-thumb2.html
P Linux 2.6.26 adds support for Thumb 2 userspace.

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

° http://free-electrons.com Sep 15, 2009 " H '

http://free-electrons.com/
http://www.arm.com/products/esd/jazelle_home.html
http://www.arm.com/products/CPUs/archi-thumb2.html

ThumbEE

» ThumbEE stands for Thumb Execution Environment

» Adds more instructions designed for runtime generated code,
for example by JIT compilation (automatic null pointer checks
or array boundary checks, branch to handlers, etc.)

P http://www.arm.com/pdfs/JazelleRCTWhitePaper_final1-0_.pdf

ARM Linux specifics

© Copyright 2004-2008, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 3.0 license

¢ http://free-electrons.com Sep 15,2009

http://free-electrons.com/
http://www.arm.com/pdfs/JazelleRCTWhitePaper_final1-0_.pdf

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

