
ARM Linux specifics
Training lab book

ARM Linux specifics
Training lab book

Thomas Petazzoni
Free Electrons

http://free-electrons.com

1 © 2008-2009, Free Electrons, http://free-electrons.com, Creative Commons License

http://free-electrons.com/
http://free-electrons.com/

ARM Linux specifics
Training lab book

About this document

This document is part of an embedded Linux training from Free Electrons.

You will find the whole training materials (slides and lab book)
on http://free-electrons.com/docs/arm-linux.

Lab data can be found on http://free-electrons.com/labs/embedded_linux.tar.bz2.

Copying this document

© 2008-2009, Free Electrons, http://free-electrons.com.

This document is released under the terms of the Creative Commons Attribution-
ShareAlike 3.0 license. This means you are free to download, distribute and even modify it,
under certain conditions.

Document updates and translations available on http://free-electrons.com/docs/arm-linux.

Corrections, suggestions, contributions and translations are welcome!

Training setup

See the training labs on http://free-electrons.com/docs/kernel for setup instructions, which are
shared with these practical labs.

2 © 2008-2009, Free Electrons, http://free-electrons.com, Creative Commons License

http://free-electrons.com/docs/kernel
http://free-electrons.com/docs/arm-linux
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://free-electrons.com/
http://free-electrons.com/labs/embedded_linux.tar.bz2
http://free-electrons.com/docs/arm-linux
http://free-electrons.com/

© 2008-2009 Free Electrons, http://free-electrons.com Creative Commons License

Lab 1 – Producing ARM Thumb binaries with
Scratchbox

Objective: Set up a cross-compiling toolchain able to produce
ARM Thumb binaries and that supports
interworking, and use it to generate a DirectFB
based demonstration

After this lab, you will be able to

Create a cross-compilation toolchain supporting interworking with
Buildroot
Integrate this toolchain inside Scratchbox
Use it to compile a DirectFB demonstration

Setup

Go to the /mnt/labs/armthumb/lab1 directory.

Make sure you have at least 2 GB of free disk space and that
Scratchbox is properly installed on your system. If not, follow the
instructions of the previous Scratchbox lab.

Install the libncurses5dev package (needed for the Buildroot
configuration tool).

Set up an host target in Scratchbox

Install the scratchboxtoolchainhostgcc package, which
contains a host compiler for Scratchbox and the scratchbox
devkitdebian package.

Starting from now, the following steps are done from Scratchbox, so
you should log into Scratchbox now.

Create an HOST target:
sbconf setup HOST compiler=hostgcc \
 devkits=debianetch

Install the devkit and /etc files to the target:
sbconf install HOST devkits etc

Select the new target:
sbconf select HOST

Generating the cross-compilation toolchain with
Buildroot inside Scratchbox

The goal of this step is to generate the cross-compilation toolchain
that we will then integrate to the Scratchbox build system. In order
for this toolchain to work properly under Scratchbox, it has to be
compiled in the Scratchbox environment.

Download our Buildroot snapshot from
http://www.free-electrons.com/labs/tools/. This lab was designed for
buildroot20080326.tar.bz2. After download, uncompress the
Buildroot tarball inside your Scratchbox home directory
/scratchbox/users/<user>/home/<user>/, and apply the
data/thumbinterworkingsupport.patch patch to Buildroot.

Run the Buildroot configuration tool outside Scratchbox:

3

ARM Linux specifics
Training lab book

The Thumb support for Buildroot has
been contributed by Free Electrons.
The patch has been sent for inclusion
into the official version of Buildroot.

http://www.free-electrons.com/labs/tools/
file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2008-2009 Free Electrons, http://free-electrons.com Creative Commons License

make menuconfig

Make the following configuration choices:

● Target architecture variant: arm720t
● Target ABI: EABI
● Toolchain and header file location: /scratchbox/compilers/

armlinuxgcc4.2uclibc0.9.29interwork
● Number of jobs to run simultaneously: 2
● strip : sstrip

● Kernel headers: Latest Linux 2.6.23.x kernel headers

● Binutils version: binutils 2.18.50.0.1

● Install sstrip for the target system: yes

● Use software floating point by default: yes

● Enable interworking support: yes
● Generate Thumb binaries: yes
● Include target utils in cross toolchain: no

● Package selection for the target: unselect all

● Target filesystem options: unselect all

● Kernel type: none

Your instructor will give the URL of a local webserver that contains
tarballs of various tools built by Buildroot. Download them, and put
them in a directory named dl/ inside Buildroot. It will save the
download time, which can be huge considering the size of the
tarballs.

Change the owner of /scratchbox/compilers/ so that Buildroot can
write to it:

sudo chown <user> /scratchbox/compilers

Before starting the compilation, we need to compile texinfo inside
Scratchbox, because it is used by the toolchain compilation process.
Get the texinfo tarball from the location given by your instructor,
uncompress it inside Scratchbox, and then run the usual
./configure ; make ; make install.

Finally, compile the toolchain inside Scratchbox by running make.

Playing with the generated toolchain

Outside Scratchbox, write a simple « Hello World » program as
follows:

#include <stdio.h>

int main(void) {
printf(“Hello World\n”);
return 0;

}

Make sure the toolchain is available in your PATH:

export PATH=/scratchbox/compilers/armlinuxgcc4.2
uclibc0.9.29interwork/usr/bin

Compile the program in Thumb mode for ARM, statically:

armlinuxgcc o test test.c mthumb static

4

ARM Linux specifics
Training lab book

If something fails during the
compilation and you want to start
again from scratch, remove the
build_arm, project_build_arm and
toolchain_build_arm directories.

The ncurses library, used by the
configuration tool is unfortunately not
available inside Scratchbox.

Texinfo is available as part of the
scratchboxdevkitdoctools
package, but unfortunately, the version
available in this package is too old to
compile a recent Binutils.

http://free-electrons.com/

© 2008-2009 Free Electrons, http://free-electrons.com Creative Commons License

You can run this program with Qemu user emulation:

qemuarm test

You can check that the program code is compiled in Thumb mode
and the library code in ARM mode by looking at the disassembled
version of the program:

armlinuxobjdump d test

The code of the main() function is in Thumb mode, while the uClibc
code is in ARM mode.

Integrating the toolchain inside Scratchbox

The goal of integrating the toolchain into Scratchbox is to allow the
creation of a Scratchbox target that uses our toolchain to cross-
compile libraries and applications.

The procedure is documented at
http://www.scratchbox.org/wiki/ForeignToolchains. We reproduce
the procedure below, with a few modifications to get it working
properly in our configuration.

First, make sure your user has write permission on
/scratchbox/device_tools, preferably by changing its owner to
your user.

Download the toolchain integration scripts for Scratchbox tarball sb
toolchainextras.tar.gz from the location given by your
instructor. Uncompress it inside Scratchbox, in your home directory.

Apply the data/sbtoolchainextrasuclibcfix.patch patch
inside sbtoolchainextras. The patch contains a small fix for the
fakeroot tool to allow it to be compiled with an uClibc without large
file support.

Download the tools needed by the toolchain integration scripts,
available as a sbtoolchainextrasdownloads.tar.gz tarball at a
location given by your instructor.

We then need to do some minor fixes to the toolchain generated by
Buildroot. Everything must be done from the toolchain directory,
/scratchbox/compilers/armlinuxgcc4.2uclibc0.9.29
interwork/.

● Create a symbolic link armlinuxuclibcgnueabi/ to
usr/armlinuxuclibcgnueabi

● Create a symbolic link include/ to usr/armlinux
uclibcgnueabi/include/

● Inside bin/, create symbolic links using the following
command:
for i in ../usr/bin/armlinuxuclibcgnueabi* ; do
ln s $i ; done

Still from the toolchain directory, run the following command to
create a configuration file for the toolchain:

~/sbtoolchainextras/confhelper/create_toolchain_conf.py
> ~/sbtoolchainextras/meta/alientc/armlinuxgcc4.2
uclibc0.9.29interwork.conf

Edit this file to modify the following variables:

5

ARM Linux specifics
Training lab book

Usually, these tools are fetched from a
Darcs repository, using the darcs tool.
We provide a tarball to speed up the
download process.

These files are automatically
downloaded by the compilation
process. But to speed up the process,
we provide a tarball with the needed
files.

http://www.scratchbox.org/wiki/ForeignToolchains
file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

© 2008-2009 Free Electrons, http://free-electrons.com Creative Commons License

● COMPILER_PACKAGE, that should be set to scratchbox
toolchainarmlinuxgcc4.2uclibc0.9.29interwork.
This will be the name of the tarball or Debian package
containing the toolchain

● VENDOR, that should be empty

● BINUTILS_FULLVER, which should be set to
2.18.50.0.1.20070908

Go back to the ~/sbtoolchainextras/ directory, and run the
following commands to integrate the toolchain into Scratchbox:

make CONFIG=meta/alientc/armlinuxgcc4.2uclibc0.9.29
interwork.conf C meta/alientc allsums

make CONFIG=meta/alientc/armlinuxgcc4.2uclibc0.9.29
interwork.conf C meta/alientc

After these steps, the new toolchain should be visible using the
command:

sbconf list compilers

Configuring the target for Thumb compilation

Create a new target with the new compiler:

sbconf setup armthumb
 compiler=armlinuxgcc4.2uclibc0.9.29interwork
 devkits=cputransp
 cputransp=/scratchbox/devkits/cputransp/bin/qemuarm
0.8.2sb2

Then, select this target:

sbconf select armthumb

And install the necessary files:

sbconf install armthumb clibrary etc

In your home directory, create an Hello World program, and compile
it simply with gcc. It should run properly, and if you look at the
binary with objdump S, the main() function should be in Thumb
mode.

Creating a Debian package containing the toolchain

Optionally, you can create a Debian package containing the
toolchain, if you want to distribute it to others. Simply run the
following command from ~/sbtoolchainextras/:

make CONFIG=meta/alientc/armlinuxgcc4.2uclibc0.9.29
interwork.conf deb

Compile the DirectFB demonstration

Create the /scratchbox/users/<user>/targets/armthumb.environment
file with the following contents:
export CFLAGS=mthumb

It will allow to automatically compile programs and libraries in
Thumb mode.

Then, take the instructions from the Scratchbox lab to recompile the

6

ARM Linux specifics
Training lab book

http://free-electrons.com/

© 2008-2009 Free Electrons, http://free-electrons.com Creative Commons License

DirectFB demonstration inside this new Scratchbox target. Use the
provided run_qemu script to start Qemu, after configuring NFS to
make it export the target root filesystem directly from the
Scratchbox directory.

7

ARM Linux specifics
Training lab book

file:///home/mike/src/websites/free-electrons.com/public/doc/http://free-electrons.com

