
1

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Accessing hardware

Accessing
hardware from

userspace

Michael Opdenacker
Thomas Petazzoni

Bootlin

2

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under a license identical to
this one.

For any reuse or distribution, you must make clear to others the license
terms of this work.
Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2009, Bootlin
feedback@free-electrons.com

Document sources, updates and translations:
https://bootlin.com/doc/legacy/accessing-hardware

Corrections, suggestions, contributions and translations are
welcome!

Latest update: Jul 25, 2018

http://creativecommons.org/licenses/by-sa/3.0/legalcode
https://bootlin.com/doc/legacy/accessing-hardware

3

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Kernel vs. userspace

For most devices, the driver

Is inside the kernel

Provides an interface for userspace
application to communicate with the
hardware

The interface is usually

A character device

A character device preferably
accessed through an utility library

There are some exceptions: block
devices, network interfaces, printers
or graphics with X.org.

Hardware

Kernel
Driver Driver

Application Utility
library

Application

Character device
device node

4

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Character device API

Character devices are seen by userspace applications as files,
so the traditional Unix file API is available

open() and close() on the device file

read() to get data from the device

write() to send data through the device

ioctl() to perform special operations on the device

poll() and select() to wait for events

mmap() to remap the device memory into the process address
space

The kernel driver is responsible for implementing this API, so
that from the perspective of the userspace application,
communicating with the hardware is very simple.

5

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

ioctl()

ioctl() is a function of the C library, a system call, and an
operation of character device driver

It is used to implement operations specific to the device or device
type, such as setting the serial port speed, changing the screen
resolution, adjusting the video capture format, etc.

Prototype of the function in userspace
int ioctl(int d, int request, ...)

d is the file descriptor

request is a number identifying the operation. This number is
device or device-type specific.

... is an unlimited number of arguments. The number of
arguments, their type and semantic depend on the ioctl operation

See man ioctl

6

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Example with the serial port

#include <termios.h>
#include <fcntl.h>
#include <sys/ioctl.h>

int main(void)
{

int fd, serial;
fd = open("/dev/ttyS0", O_RDWR);
write(fd, “Hello”, 5);
ioctl(fd, TIOCMGET, &serial);
if (serial & TIOCM_DTR)

printf("TIOCM_DTR is not set");
else

printf("TIOCM_DTR is set");
close(fd);

}

Open the
device

Write to it

Perform a special
operation on it : get
the status bits

Warning: error checking omitted!

7

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

ioctl operations for serial ports

There are many ioctl operations for serial ports, as defined by the
tty_ioctl manual page. For some of them, POSIX also
specifies functions to wrap ioctl operations

TCGETS operation is similar to the tcgetattr() function, it gets a
termios structure

TCSETS operation is similar to the tcsetattr() function, it sets a
termios structure

TCSBRK similar to tcsendbreak(), it sends a break

TCXONC similar to tcflow(), to control the software flow control

TCFLSH similar to tcflush(), to flush the input or output buffers

TIOCMGET to get the status of the modem bits

TIOCMSET to set the status of the modem bits

See the termios manual page for more details

8

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Termios example

struct termios options;

fd = open(“/dev/ttyS0”, O_RDWR);

tcgetattr(fd, &options);

cfsetispeed(&options, B19200);
cfsetospeed(&options, B19200);
options.c_cflag |= (CLOCAL | CREAD);

tcsetattr(fd, TCSANOW, &options);

Warning: error checking omitted!

Get current value
of the termios
structure

Modify the
settings

Set the new
termios structure

9

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

I2C

I2C client driver I2C adapter driver

I2C core

Interface that
depends

on device type
i2c-dev

I2C device I2C controller

Application Application

Userspace

Kernel

Hardware

10

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

I2C from userspace

Some I2C devices have directly a driver in the kernel

In this case, the driver is tied to the appropriate kernel
infrastructure, depending on the device type

It is made available to userspace through this infrastructure

The i2c-dev driver allows an userspace application to directly
interact on the I2C bus

Character devices are created in userspace for each I2C adapter

Major is 89, the minor is the adapter number

Conventional name is /dev/i2c-0, /dev/i2c-1, etc.

See /sys/class/i2c-dev/ or run i2cdetect -l for a list

i2cdetect is part of the i2c-tools package in Ubuntu/Debian
distributions

11

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

i2c-dev

Open the i2c-dev device
fd = open(“/dev/i2c-0”, O_RDWR);

Specify the device with which you want to communicate
ioctl(fd, I2C_SLAVE, 0x40);

Write to the bus
buf[0] = register;
buf[1] = data1;
buf[2] = data2;
write(fd, buf, 3);

Read from the bus
read(fd, buf, 1);

See Documentation/i2c/dev-interface for details

12

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Accessing hardware directly (1)

The /dev/mem character device allows to access directly to the
physical memory, including I/O memory

read() or write() operations are possible

mmap() operation is also possible, to remap specific parts of the
physical memory to the address space of the application.

Obviously, access rights to this device must be properly set, as it
allows to do anything with the system
crw-r----- 1 root kmem 1, 1 2009-04-28 10:37 /dev/mem

Exemple from the X.org server
fd = open ("/dev/mem", O_RDWR);
a = mmap (0, size, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, addr);
close(fd);

13

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Accessing hardware directly (2)

Other character device drivers can also provide a mmap()
operation which can be used by userspace applications

For example, in DirectFB, a library that relies on the kernel
framebuffer driver :
int fd;
char *fbbase;
fd = open(“/dev/fb0”, O_RDWR);
fbbase = mmap(NULL, shared->fix.smem_len,

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

Then the fbbase pointer can be used to directly read and write to
the framebuffer.

14

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

GPIOs

GPIOs can be directly accessed through /dev/mem or a specific
character driver implementing the mmap() operation

If the board code supports the gpiolib kernel framework,
GPIOs are made available to userspace through sysfs

/sys/class/gpio/gpioN/ directory for each GPIO

direction file to configure the direction (either in and out)

value file to configure the value (0 or 1)

/sys/class/gpio/

export allows to export GPIO to userspace that haven't been
explicitly exported by the kernel. Writing the GPIO number is sufficient

unexport allows to unexport GPIOs
that have previously been exported

See Documentation/gpio.txt in kernel sources for details.

http://free-electrons.com/kerneldoc/latest/gpio.txt

15

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Utility libraries

Most of the device drivers in the kernel fit inside a framework,
that unifies the set of operations that can be performed on a
device of a given type

Some of these device types must be used directly as character
devices by userspace applications

For other device types, an utility library is available to ease usage
of the device

ALSA sound devices, represented as character devices in
userspace, are better used through libasound

Video 4 Linux devices through libv4l

Framebuffer devices through DirectFB

Don't forget to check if an utility library exists for your case, or
write your own !

