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Preface

This is, on the surface, a book about writing device drivers for the Linux system.
That is a worthy goal, of course; the flow of new hardware products is not likely to
slow down anytime soon, and somebody is going to have to make all those new gad-
gets work with Linux. But this book is also about how the Linux kernel works and
how to adapt its workings to your needs or interests. Linux is an open system; with
this book, we hope, it is more open and accessible to a larger community of developers.

This is the third edition of Linux Device Drivers. The kernel has changed greatly
since this book was first published, and we have tried to evolve the text to match.
This edition covers the 2.6.10 kernel as completely as we are able. We have, this time
around, elected to omit the discussion of backward compatibility with previous ker-
nel versions. The changes from 2.4 are simply too large, and the 2.4 interface
remains well documented in the (freely available) second edition.

This edition contains quite a bit of new material relevant to the 2.6 kernel. The dis-
cussion of locking and concurrency has been expanded and moved into its own
chapter. The Linux device model, which is new in 2.6, is covered in detail. There are
new chapters on the USB bus and the serial driver subsystem; the chapter on PCI has
also been enhanced. While the organization of the rest of the book resembles that of
the earlier editions, every chapter has been thoroughly updated.

We hope you enjoy reading this book as much as we have enjoyed writing it.

Jon’s Introduction

The publication of this edition coincides with my twelth year of working with Linux
and, shockingly, my twenty-fifth year in the computing field. Computing seemed like
a fast-moving field back in 1980, but things have sped up a lot since then. Keeping
Linux Device Drivers up to date is increasingly a challenge; the Linux kernel hackers
continue to improve their code, and they have little patience for documentation that
fails to keep up.
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Linux continues to succeed in the market and, more importantly, in the hearts and
minds of developers worldwide. The success of Linux is clearly a testament to its
technical quality and to the numerous benefits of free software in general. But the
true key to its success, in my opinion, lies in the fact that it has brought the fun back
to computing. With Linux, anybody can get their hands into the system and play in a
sandbox where contributions from any direction are welcome, but where technical
excellence is valued above all else. Linux not only provides us with a top-quality
operating system; it gives us the opportunity to be part of its future development and
to have fun while we’re at it.

In my 25 years in the field, I have had many interesting opportunities, from program-
ming the first Cray computers (in Fortran, on punch cards) to seeing the minicom-
puter and Unix workstation waves, through to the current, microprocessor-
dominated era. Never, though, have I seen the field more full of life, opportunity,
and fun. Never have we had such control over our own tools and their evolution.
Linux, and free software in general, is clearly the driving force behind those changes.

My hope is that this edition helps to bring that fun and opportunity to a new set of
Linux developers. Whether your interests are in the kernel or in user space, I hope
you find this book to be a useful and interesting guide to just how the kernel works
with the hardware. T hope it helps and inspires you to fire up your editor and to
make our shared, free operating system even better. Linux has come a long way, but
it is also just beginning; it will be more than interesting to watch—and participate
in—what happens from here.

Alessandro’s Introduction

I've always enjoyed computers because they can talk to external hardware. So, after
soldering my devices for the Apple II and the ZX Spectrum, backed with the Unix
and free software expertise the university gave me, I could escape the DOS trap by
installing GNU/Linux on a fresh new 386 and by turning on the soldering iron once
again.

Back then, the community was a small one, and there wasn’t much documentation
about writing drivers around, so I started writing for Linux Journal. That’s how
things started: when I later discovered I didn’t like writing papers, I left the univer-
isty and found myself with an O’Reilly contract in my hands.

That was in 1996. Ages ago.

The computing world is different now: free software looks like a viable solution,
both technically and politically, but there’s a lot of work to do in both realms. I hope
this book furthers two aims: spreading technical knowledge and raising awareness
about the need to spread knowledge. That’s why, after the first edition proved inter-
esting to the public, the two authors of the second edition switched to a free license,
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supported by our editor and our publisher. I'm betting this is the right approach to
information, and it’s great to team up with other people sharing this vision.

I’'m excited by what I witness in the embedded arena, and I hope this text helps by
doing more; but ideas are moving fast these days, and it’s already time to plan for the
fourth edition, and look for a fourth author to help.

Greg’s Introduction

It seems like a long time ago that I picked up the first edition of this Linux Device
Drivers book in order to figure out how to write a real Linux driver. That first edi-
tion was a great guide to helping me understand the internals of this operating sys-
tem that I had already been using for a number of years but whose kernel had never
taken the time to look into. With the knowledge gained from that book, and by read-
ing other programmers’ code already present in the kernel, my first horribly buggy,
broken, and very SMP-unsafe driver was accepted by the kernel community into the
main kernel tree. Despite receiving my first bug report five minutes later, I was
hooked on wanting to do as much as I could to make this operating system the best
it could possibly be.

[ am honored that I've had the ability to contribute to this book. I hope that it
enables others to learn the details about the kernel, discover that driver development
is not a scary or forbidding place, and possibly encourage others to join in and help
in the collective effort of making this operating system work on every computing
platform with every type of device available. The development procedure is fun, the
community is rewarding, and everyone benefits from the effort involved.

Now it’s back to making this edition obsolete by fixing current bugs, changing APIs
to work better and be simpler to understand for everyone, and adding new features.
Come along; we can always use the help.

Audience for This Book

This book should be an interesting source of information both for people who want
to experiment with their computer and for technical programmers who face the need
to deal with the inner levels of a Linux box. Note that “a Linux box” is a wider con-
cept than “a PC running Linux,” as many platforms are supported by our operating
system, and kernel programming is by no means bound to a specific platform. We
hope this book is useful as a starting point for people who want to become kernel
hackers but don’t know where to start.

On the technical side, this text should offer a hands-on approach to understanding
the kernel internals and some of the design choices made by the Linux developers.
Although the main, official target of the book is teaching how to write device drivers,
the material should give an interesting overview of the kernel implementation as well.
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Although real hackers can find all the necessary information in the official kernel
sources, usually a written text can be helpful in developing programming skills. The
text you are approaching is the result of hours of patient grepping through the ker-
nel sources, and we hope the final result is worth the effort it took.

The Linux enthusiast should find in this book enough food for her mind to start
playing with the code base and should be able to join the group of developers that is
continuously working on new capabilities and performance enhancements. This
book does not cover the Linux kernel in its entirety, of course, but Linux device
driver authors need to know how to work with many of the kernel’s subsystems.
Therefore, it makes a good introduction to kernel programming in general. Linux is
still a work in progress, and there’s always a place for new programmers to jump into
the game.

If, on the other hand, you are just trying to write a device driver for your own device,
and you don’t want to muck with the kernel internals, the text should be modular-
ized enough to fit your needs as well. If you don’t want to go deep into the details,
you can just skip the most technical sections, and stick to the standard API used by
device drivers to seamlessly integrate with the rest of the kernel.

Organization of the Material

The book introduces its topics in ascending order of complexity and is divided into
two parts. The first part (Chapters 1-11) begins with the proper setup of kernel mod-
ules and goes on to describe the various aspects of programming that you’ll need in
order to write a full-featured driver for a char-oriented device. Every chapter covers a
distinct problem and includes a quick summary at the end, which can be used as a
reference during actual development.

Throughout the first part of the book, the organization of the material moves roughly
from the software-oriented concepts to the hardware-related ones. This organization
is meant to allow you to test the software on your own computer as far as possible
without the need to plug external hardware into the machine. Every chapter includes
source code and points to sample drivers that you can run on any Linux computer.
In Chapters 1 and 1, however, we ask you to connect an inch of wire to the parallel
port in order to test out hardware handling, but this requirement should be manage-
able by everyone.

The second half of the book (Chapters 12-18) describes block drivers and network
interfaces and goes deeper into more advanced topics, such as working with the vir-
tual memory subsystem and with the PCI and USB buses. Many driver authors do
not need all of this material, but we encourage you to go on reading anyway. Much
of the material found there is interesting as a view into how the Linux kernel works,
even if you do not need it for a specific project.
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Background Information

In order to be able to use this book, you need to be confident with C programming.
Some Unix expertise is needed as well, as we often refer to Unix semantics about sys-
tem calls, commands, and pipelines.

At the hardware level, no previous expertise is required to understand the material in
this book, as long as the general concepts are clear in advance. The text isn’t based
on specific PC hardware, and we provide all the needed information when we do
refer to specific hardware.

Several free software tools are needed to build the kernel, and you often need spe-
cific versions of these tools. Those that are too old can lack needed features, while
those that are too new can occasionally generate broken kernels. Usually, the tools
provided with any current distribution work just fine. Tool version requirements
vary from one kernel to the next; consult Documentation/Changes in the source tree
of the kernel you are using for exact requirements.

Online Version and License

The authors have chosen to make this book freely available under the Creative Com-
mons “Attribution-ShareAlike” license, Version 2.0:

http://www.oreilly.com/catalog/linuxdrive3

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Italic
Used for file and directory names, program and command names, command-line
options, URLs, and new terms

Constant Width
Used in examples to show the contents of files or the output from commands,
and in the text to indicate words that appear in C code or other literal strings

Constant Width Italic
Used to indicate text within commands that the user replaces with an actual
value

Constant Width Bold
Used in examples to show commands or other text that should be typed literally
by the user
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Pay special attention to notes set apart from the text with the following icons:

W R
iy This is a tip. It contains useful supplementary information about the
t‘s‘.‘ . topic at hand.

-,

This is a warning. It helps you solve and avoid annoying problems.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. The code samples are covered by a
dual BSD/GPL license.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Linux Device Drivers, Third Edi-
tion, by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Copyright
2005 O’Reilly Media, Inc., 0-596-00590-3.”

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/linuxdrive3
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com
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Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite tech-

sa'a" nology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.
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CHAPTER 1

An Introduction to
Device Drivers

One of the many advantages of free operating systems, as typified by Linux, is that
their internals are open for all to view. The operating system, once a dark and myste-
rious area whose code was restricted to a small number of programmers, can now be
readily examined, understood, and modified by anybody with the requisite skills.
Linux has helped to democratize operating systems. The Linux kernel remains a
large and complex body of code, however, and would-be kernel hackers need an
entry point where they can approach the code without being overwhelmed by com-
plexity. Often, device drivers provide that gateway.

Device drivers take on a special role in the Linux kernel. They are distinct “black
boxes” that make a particular piece of hardware respond to a well-defined internal
programming interface; they hide completely the details of how the device works.
User activities are performed by means of a set of standardized calls that are indepen-
dent of the specific driver; mapping those calls to device-specific operations that act
on real hardware is then the role of the device driver. This programming interface is
such that drivers can be built separately from the rest of the kernel and “plugged in”
at runtime when needed. This modularity makes Linux drivers easy to write, to the
point that there are now hundreds of them available.

There are a number of reasons to be interested in the writing of Linux device drivers.
The rate at which new hardware becomes available (and obsolete!) alone guarantees
that driver writers will be busy for the foreseeable future. Individuals may need to
know about drivers in order to gain access to a particular device that is of interest to
them. Hardware vendors, by making a Linux driver available for their products, can
add the large and growing Linux user base to their potential markets. And the open
source nature of the Linux system means that if the driver writer wishes, the source
to a driver can be quickly disseminated to millions of users.

This book teaches you how to write your own drivers and how to hack around in
related parts of the kernel. We have taken a device-independent approach; the pro-
gramming techniques and interfaces are presented, whenever possible, without being
tied to any specific device. Each driver is different; as a driver writer, you need to
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understand your specific device well. But most of the principles and basic tech-
niques are the same for all drivers. This book cannot teach you about your device,
but it gives you a handle on the background you need to make your device work.

As you learn to write drivers, you find out a lot about the Linux kernel in general;
this may help you understand how your machine works and why things aren’t
always as fast as you expect or don’t do quite what you want. We introduce new
ideas gradually, starting off with very simple drivers and building on them; every new
concept is accompanied by sample code that doesn’t need special hardware to be
tested.

This chapter doesn’t actually get into writing code. However, we introduce some
background concepts about the Linux kernel that you’ll be glad you know later,
when we do launch into programming.

The Role of the Device Driver

As a programmer, you are able to make your own choices about your driver, and
choose an acceptable trade-off between the programming time required and the flexi-
bility of the result. Though it may appear strange to say that a driver is “flexible,” we
like this word because it emphasizes that the role of a device driver is providing
mechanism, not policy.

The distinction between mechanism and policy is one of the best ideas behind the
Unix design. Most programming problems can indeed be split into two parts: “what
capabilities are to be provided” (the mechanism) and “how those capabilities can be
used” (the policy). If the two issues are addressed by different parts of the program,
or even by different programs altogether, the software package is much easier to
develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between the X server,
which knows the hardware and offers a unified interface to user programs, and the
window and session managers, which implement a particular policy without know-
ing anything about the hardware. People can use the same window manager on dif-
ferent hardware, and different users can run different configurations on the same
workstation. Even completely different desktop environments, such as KDE and
GNOME, can coexist on the same system. Another example is the layered structure
of TCP/IP networking: the operating system offers the socket abstraction, which
implements no policy regarding the data to be transferred, while different servers are
in charge of the services (and their associated policies). Moreover, a server like ftpd
provides the file transfer mechanism, while users can use whatever client they prefer;
both command-line and graphic clients exist, and anyone can write a new user inter-
face to transfer files.

Where drivers are concerned, the same separation of mechanism and policy applies.
The floppy driver is policy free—its role is only to show the diskette as a continuous
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array of data blocks. Higher levels of the system provide policies, such as who may
access the floppy drive, whether the drive is accessed directly or via a filesystem, and
whether users may mount filesystems on the drive. Since different environments usu-
ally need to use hardware in different ways, it’s important to be as policy free as
possible.

When writing drivers, a programmer should pay particular attention to this funda-
mental concept: write kernel code to access the hardware, but don’t force particular
policies on the user, since different users have different needs. The driver should deal
with making the hardware available, leaving all the issues about how to use the hard-
ware to the applications. A driver, then, is flexible if it offers access to the hardware
capabilities without adding constraints. Sometimes, however, some policy decisions
must be made. For example, a digital I/O driver may only offer byte-wide access to
the hardware in order to avoid the extra code needed to handle individual bits.

You can also look at your driver from a different perspective: it is a software layer
that lies between the applications and the actual device. This privileged role of the
driver allows the driver programmer to choose exactly how the device should appear:
different drivers can offer different capabilities, even for the same device. The actual
driver design should be a balance between many different considerations. For
instance, a single device may be used concurrently by different programs, and the
driver programmer has complete freedom to determine how to handle concurrency.
You could implement memory mapping on the device independently of its hardware
capabilities, or you could provide a user library to help application programmers
implement new policies on top of the available primitives, and so forth. One major
consideration is the trade-off between the desire to present the user with as many
options as possible and the time you have to write the driver, as well as the need to
keep things simple so that errors don’t creep in.

Policy-free drivers have a number of typical characteristics. These include support for
both synchronous and asynchronous operation, the ability to be opened multiple
times, the ability to exploit the full capabilities of the hardware, and the lack of soft-
ware layers to “simplify things” or provide policy-related operations. Drivers of this
sort not only work better for their end users, but also turn out to be easier to write
and maintain as well. Being policy-free is actually a common target for software
designers.

Many device drivers, indeed, are released together with user programs to help with
configuration and access to the target device. Those programs can range from simple
utilities to complete graphical applications. Examples include the tunelp program,
which adjusts how the parallel port printer driver operates, and the graphical cardctl
utility that is part of the PCMCIA driver package. Often a client library is provided as
well, which provides capabilities that do not need to be implemented as part of the
driver itself.
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The scope of this book is the kernel, so we try not to deal with policy issues or with
application programs or support libraries. Sometimes we talk about different poli-
cies and how to support them, but we won’t go into much detail about programs
using the device or the policies they enforce. You should understand, however, that
user programs are an integral part of a software package and that even policy-free
packages are distributed with configuration files that apply a default behavior to the
underlying mechanisms.

Splitting the Kernel

In a Unix system, several concurrent processes attend to different tasks. Each process
asks for system resources, be it computing power, memory, network connectivity, or
some other resource. The kernel is the big chunk of executable code in charge of han-
dling all such requests. Although the distinction between the different kernel tasks
isn’t always clearly marked, the kernel’s role can be split (as shown in Figure 1-1)
into the following parts:

Process management

The kernel is in charge of creating and destroying processes and handling their
connection to the outside world (input and output). Communication among dif-
ferent processes (through signals, pipes, or interprocess communication primi-
tives) is basic to the overall system functionality and is also handled by the
kernel. In addition, the scheduler, which controls how processes share the CPU,
is part of process management. More generally, the kernel’s process manage-
ment activity implements the abstraction of several processes on top of a single
CPU or a few of them.

Memory management
The computer’s memory is a major resource, and the policy used to deal with it
is a critical one for system performance. The kernel builds up a virtual address-
ing space for any and all processes on top of the limited available resources. The
different parts of the kernel interact with the memory-management subsystem
through a set of function calls, ranging from the simple malloc/free pair to much
more complex functionalities.

Filesystems

Unix is heavily based on the filesystem concept; almost everything in Unix can
be treated as a file. The kernel builds a structured filesystem on top of unstruc-
tured hardware, and the resulting file abstraction is heavily used throughout the
whole system. In addition, Linux supports multiple filesystem types, that is, dif-
ferent ways of organizing data on the physical medium. For example, disks may
be formatted with the Linux-standard ext3 filesystem, the commonly used FAT
filesystem or several others.
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Device control

Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a very few other entities, any and all
device control operations are performed by code that is specific to the device
being addressed. That code is called a device driver. The kernel must have
embedded in it a device driver for every peripheral present on a system, from the
hard drive to the keyboard and the tape drive. This aspect of the kernel’s func-
tions is our primary interest in this book.

Networking

Networking must be managed by the operating system, because most network
operations are not specific to a process: incoming packets are asynchronous
events. The packets must be collected, identified, and dispatched before a pro-
cess takes care of them. The system is in charge of delivering data packets across
program and network interfaces, and it must control the execution of programs
according to their network activity. Additionally, all the routing and address res-
olution issues are implemented within the kernel.

Loadable Modules

One of the good features of Linux is the ability to extend at runtime the set of fea-
tures offered by the kernel. This means that you can add functionality to the kernel
(and remove functionality as well) while the system is up and running.

Each piece of code that can be added to the kernel at runtime is called a module. The
Linux kernel offers support for quite a few different types (or classes) of modules,
including, but not limited to, device drivers. Each module is made up of object code
(not linked into a complete executable) that can be dynamically linked to the run-
ning kernel by the insmod program and can be unlinked by the rmmod program.

Figure 1-1 identifies different classes of modules in charge of specific tasks—a mod-
ule is said to belong to a specific class according to the functionality it offers. The
placement of modules in Figure 1-1 covers the most important classes, but is far from
complete because more and more functionality in Linux is being modularized.

Classes of Devices and Modules

The Linux way of looking at devices distinguishes between three fundamental device
types. Each module usually implements one of these types, and thus is classifiable as a
char module, a block module, or a network module. This division of modules into dif-
ferent types, or classes, is not a rigid one; the programmer can choose to build huge
modules implementing different drivers in a single chunk of code. Good program-
mers, nonetheless, usually create a different module for each new functionality they
implement, because decomposition is a key element of scalability and extendability.
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Figure 1-1. A split view of the kernel

The three classes are:

Character devices

A character (char) device is one that can be accessed as a stream of bytes (like a
file); a char driver is in charge of implementing this behavior. Such a driver usu-
ally implements at least the open, close, read, and write system calls. The text
console (/dev/console) and the serial ports (/dev/ttySO and friends) are examples
of char devices, as they are well represented by the stream abstraction. Char
devices are accessed by means of filesystem nodes, such as /dev/ttyl and /dev/Ip0.
The only relevant difference between a char device and a regular file is that you
can always move back and forth in the regular file, whereas most char devices
are just data channels, which you can only access sequentially. There exist,
nonetheless, char devices that look like data areas, and you can move back and
forth in them; for instance, this usually applies to frame grabbers, where the
applications can access the whole acquired image using mmap or Iseck.
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Block devices

Like char devices, block devices are accessed by filesystem nodes in the /dev
directory. A block device is a device (e.g., a disk) that can host a filesystem. In
most Unix systems, a block device can only handle I/O operations that transfer
one or more whole blocks, which are usually 512 bytes (or a larger power of
two) bytes in length. Linux, instead, allows the application to read and write a
block device like a char device—it permits the transfer of any number of bytes at
a time. As a result, block and char devices differ only in the way data is managed
internally by the kernel, and thus in the kernel/driver software interface. Like a
char device, each block device is accessed through a filesystem node, and the dif-
ference between them is transparent to the user. Block drivers have a completely
different interface to the kernel than char drivers.

Network interfaces

Any network transaction is made through an interface, that is, a device that is
able to exchange data with other hosts. Usually, an interface is a hardware
device, but it might also be a pure software device, like the loopback interface. A
network interface is in charge of sending and receiving data packets, driven by
the network subsystem of the kernel, without knowing how individual transac-
tions map to the actual packets being transmitted. Many network connections
(especially those using TCP) are stream-oriented, but network devices are, usu-
ally, designed around the transmission and receipt of packets. A network driver
knows nothing about individual connections; it only handles packets.

Not being a stream-oriented device, a network interface isn’t easily mapped to a
node in the filesystem, as /dev/ttyl is. The Unix way to provide access to inter-
faces is still by assigning a unique name to them (such as etho), but that name
doesn’t have a corresponding entry in the filesystem. Communication between
the kernel and a network device driver is completely different from that used
with char and block drivers. Instead of read and write, the kernel calls functions
related to packet transmission.

There are other ways of classifying driver modules that are orthogonal to the above
device types. In general, some types of drivers work with additional layers of kernel
support functions for a given type of device. For example, one can talk of universal
serial bus (USB) modules, serial modules, SCSI modules, and so on. Every USB
device is driven by a USB module that works with the USB subsystem, but the device
itself shows up in the system as a char device (a USB serial port, say), a block device
(a USB memory card reader), or a network device (a USB Ethernet interface).

Other classes of device drivers have been added to the kernel in recent times, includ-
ing FireWire drivers and 120 drivers. In the same way that they handled USB and
SCSI drivers, kernel developers collected class-wide features and exported them to
driver implementers to avoid duplicating work and bugs, thus simplifying and
strengthening the process of writing such drivers.
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In addition to device drivers, other functionalities, both hardware and software, are
modularized in the kernel. One common example is filesystems. A filesystem type
determines how information is organized on a block device in order to represent a
tree of directories and files. Such an entity is not a device driver, in that there’s no
explicit device associated with the way the information is laid down; the filesystem
type is instead a software driver, because it maps the low-level data structures to
high-level data structures. It is the filesystem that determines how long a filename
can be and what information about each file is stored in a directory entry. The file-
system module must implement the lowest level of the system calls that access direc-
tories and files, by mapping filenames and paths (as well as other information, such
as access modes) to data structures stored in data blocks. Such an interface is com-
pletely independent of the actual data transfer to and from the disk (or other
medium), which is accomplished by a block device driver.

If you think of how strongly a Unix system depends on the underlying filesystem,
you’ll realize that such a software concept is vital to system operation. The ability to
decode filesystem information stays at the lowest level of the kernel hierarchy and is
of utmost importance; even if you write a block driver for your new CD-ROM, it is
useless if you are not able to run Is or ¢p on the data it hosts. Linux supports the con-
cept of a filesystem module, whose software interface declares the different opera-
tions that can be performed on a filesystem inode, directory, file, and superblock. It’s
quite unusual for a programmer to actually need to write a filesystem module,
because the official kernel already includes code for the most important filesystem

types.

Security Issues

Security is an increasingly important concern in modern times. We will discuss secu-
rity-related issues as they come up throughout the book. There are a few general con-
cepts, however, that are worth mentioning now.

Any security check in the system is enforced by kernel code. If the kernel has secu-
rity holes, then the system as a whole has holes. In the official kernel distribution,
only an authorized user can load modules; the system call init_module checks if the
invoking process is authorized to load a module into the kernel. Thus, when run-
ning an official kernel, only the superuser,” or an intruder who has succeeded in
becoming privileged, can exploit the power of privileged code.

When possible, driver writers should avoid encoding security policy in their code.
Security is a policy issue that is often best handled at higher levels within the kernel,
under the control of the system administrator. There are always exceptions, however.

* Technically, only somebody with the CAP_SYS_MODULE capability can perform this operation. We discuss
capabilities in Chapter 6.
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As a device driver writer, you should be aware of situations in which some types of
device access could adversely affect the system as a whole and should provide ade-
quate controls. For example, device operations that affect global resources (such as
setting an interrupt line), which could damage the hardware (loading firmware, for
example), or that could affect other users (such as setting a default block size on a
tape drive), are usually only available to sufficiently privileged users, and this check
must be made in the driver itself.

Driver writers must also be careful, of course, to avoid introducing security bugs.
The C programming language makes it easy to make several types of errors. Many
current security problems are created, for example, by buffer overrun errors, in which
the programmer forgets to check how much data is written to a buffer, and data ends
up written beyond the end of the buffer, thus overwriting unrelated data. Such errors
can compromise the entire system and must be avoided. Fortunately, avoiding these
errors is usually relatively easy in the device driver context, in which the interface to
the user is narrowly defined and highly controlled.

Some other general security ideas are worth keeping in mind. Any input received
from user processes should be treated with great suspicion; never trust it unless you
can verify it. Be careful with uninitialized memory; any memory obtained from the
kernel should be zeroed or otherwise initialized before being made available to a user
process or device. Otherwise, information leakage (disclosure of data, passwords,
etc.) could result. If your device interprets data sent to it, be sure the user cannot
send anything that could compromise the system. Finally, think about the possible
effect of device operations; if there are specific operations (e.g., reloading the firm-
ware on an adapter board or formatting a disk) that could affect the system, those
operations should almost certainly be restricted to privileged users.

Be careful, also, when receiving software from third parties, especially when the ker-
nel is concerned: because everybody has access to the source code, everybody can
break and recompile things. Although you can usually trust precompiled kernels
found in your distribution, you should avoid running kernels compiled by an
untrusted friend—if you wouldn’t run a precompiled binary as root, then you’d bet-
ter not run a precompiled kernel. For example, a maliciously modified kernel could
allow anyone to load a module, thus opening an unexpected back door via init_module.

Note that the Linux kernel can be compiled to have no module support whatsoever,
thus closing any module-related security holes. In this case, of course, all needed
drivers must be built directly into the kernel itself. It is also possible, with 2.2 and
later kernels, to disable the loading of kernel modules after system boot via the capa-
bility mechanism.
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Version Numbering

Before digging into programming, we should comment on the version numbering
scheme used in Linux and which versions are covered by this book.

First of all, note that every software package used in a Linux system has its own
release number, and there are often interdependencies across them: you need a par-
ticular version of one package to run a particular version of another package. The
creators of Linux distributions usually handle the messy problem of matching pack-
ages, and the user who installs from a prepackaged distribution doesn’t need to deal
with version numbers. Those who replace and upgrade system software, on the other
hand, are on their own in this regard. Fortunately, almost all modern distributions
support the upgrade of single packages by checking interpackage dependencies; the
distribution’s package manager generally does not allow an upgrade until the depen-
dencies are satisfied.

To run the examples we introduce during the discussion, you won’t need particular
versions of any tool beyond what the 2.6 kernel requires; any recent Linux distribu-
tion can be used to run our examples. We won’t detail specific requirements,
because the file Documentation/Changes in your kernel sources is the best source of
such information if you experience any problems.

As far as the kernel is concerned, the even-numbered kernel versions (i.e., 2.6.x) are
the stable ones that are intended for general distribution. The odd versions (such as
2.7.x), on the contrary, are development snapshots and are quite ephemeral; the lat-
est of them represents the current status of development, but becomes obsolete in a
few days or so.

This book covers Version 2.6 of the kernel. Our focus has been to show all the fea-
tures available to device driver writers in 2.6.10, the current version at the time we
are writing. This edition of the book does not cover prior versions of the kernel. For
those of you who are interested, the second edition covered Versions 2.0 through 2.4
in detail. That edition is still available online at http://lwn.net/Kernel/LDD2/.

Kernel programmers should be aware that the development process changed with 2.6.
The 2.6 series is now accepting changes that previously would have been considered
too large for a “stable” kernel. Among other things, that means that internal kernel
programming interfaces can change, thus potentially obsoleting parts of this book;
for this reason, the sample code accompanying the text is known to work with 2.6.10,
but some modules don’t compile under earlier versions. Programmers wanting to
keep up with kernel programming changes are encouraged to join the mailing lists
and to make use of the web sites listed in the bibliography. There is also a web page
maintained at http://lwn.net/Articles/2.6-kernel-api/, which contains information
about API changes that have happened since this book was published.
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This text doesn’t talk specifically about odd-numbered kernel versions. General users
never have a reason to run development kernels. Developers experimenting with new
features, however, want to be running the latest development release. They usually
keep upgrading to the most recent version to pick up bug fixes and new implementa-
tions of features. Note, however, that there’s no guarantee on experimental kernels,”
and nobody helps you if you have problems due to a bug in a noncurrent odd-num-
bered kernel. Those who run odd-numbered versions of the kernel are usually skilled
enough to dig in the code without the need for a textbook, which is another reason
why we don’t talk about development kernels here.

Another feature of Linux is that it is a platform-independent operating system, not
just “a Unix clone for PC clones” anymore: it currently supports some 20 architec-
tures. This book is platform independent as far as possible, and all the code samples
have been tested on at least the x86 and x86-64 platforms. Because the code has been
tested on both 32-bit and 64-bit processors, it should compile and run on all other
platforms. As you might expect, the code samples that rely on particular hardware
don’t work on all the supported platforms, but this is always stated in the source
code.

License Terms

Linux is licensed under Version 2 of the GNU General Public License (GPL), a docu-
ment devised for the GNU project by the Free Software Foundation. The GPL allows
anybody to redistribute, and even sell, a product covered by the GPL, as long as the
recipient has access to the source and is able to exercise the same rights. Addition-

ally, any software product derived from a product covered by the GPL must, if it is
redistributed at all, be released under the GPL.

The main goal of such a license is to allow the growth of knowledge by permitting
everybody to modify programs at will; at the same time, people selling software to
the public can still do their job. Despite this simple objective, there’s a never-ending
discussion about the GPL and its use. If you want to read the license, you can find it
in several places in your system, including the top directory of your kernel source
tree in the COPYING file.

Vendors often ask whether they can distribute kernel modules in binary form only.
The answer to that question has been deliberately left ambiguous. Distribution of
binary modules—as long as they adhere to the published kernel interface—has been
tolerated so far. But the copyrights on the kernel are held by many developers, and
not all of them agree that kernel modules are not derived products. If you or your
employer wish to distribute kernel modules under a nonfree license, you really need

* Note that there’s no guarantee on even-numbered kernels as well, unless you rely on a commercial provider
that grants its own warranty.
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to discuss the situation with your legal counsel. Please note also that the kernel
developers have no qualms against breaking binary modules between kernel releases,
even in the middle of a stable kernel series. If it is at all possible, both you and your
users are better off if you release your module as free software.

If you want your code to go into the mainline kernel, or if your code requires patches
to the kernel, you must use a GPL-compatible license as soon as you release the code.
Although personal use of your changes doesn’t force the GPL on you, if you distrib-
ute your code, you must include the source code in the distribution—people acquir-
ing your package must be allowed to rebuild the binary at will.

As far as this book is concerned, most of the code is freely redistributable, either in
source or binary form, and neither we nor O’Reilly retain any right on any derived
works. All the programs are available at ftp://ftp.ora.com/publexamples/linux/drivers/,
and the exact license terms are stated in the LICENSE file in the same directory.

Joining the Kernel Development Community

As you begin writing modules for the Linux kernel, you become part of a larger com-
munity of developers. Within that community, you can find not only people engaged
in similar work, but also a group of highly committed engineers working toward
making Linux a better system. These people can be a source of help, ideas, and criti-
cal review as well—they will be the first people you will likely turn to when you are
looking for testers for a new driver.

The central gathering point for Linux kernel developers is the linux-kernel mailing
list. All major kernel developers, from Linus Torvalds on down, subscribe to this list.
Please note that the list is not for the faint of heart: traffic as of this writing can run
up to 200 messages per day or more. Nonetheless, following this list is essential for
those who are interested in kernel development; it also can be a top-quality resource
for those in need of kernel development help.

To join the linux-kernel list, follow the instructions found in the linux-kernel mail-
ing list FAQ: http://lwww.tux.org/lkml. Read the rest of the FAQ while you are at it;
there is a great deal of useful information there. Linux kernel developers are busy
people, and they are much more inclined to help people who have clearly done their
homework first.

Overview of the Book

From here on, we enter the world of kernel programming. Chapter 2 introduces
modularization, explaining the secrets of the art and showing the code for running
modules. Chapter 3 talks about char drivers and shows the complete code for a
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memory-based device driver that can be read and written for fun. Using memory as
the hardware base for the device allows anyone to run the sample code without the
need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are introduced in
Chapter 4. Equally important for those who would hack on contemporary kernels is
the management of concurrency and race conditions. Chapter 5 concerns itself with
the problems posed by concurrent access to resources and introduces the Linux
mechanisms for controlling concurrency.

With debugging and concurrency management skills in place, we move to advanced
features of char drivers, such as blocking operations, the use of select, and the impor-
tant ioctl call; these topics are the subject of Chapter 6.

Before dealing with hardware management, we dissect a few more of the kernel’s
software interfaces: Chapter 7 shows how time is managed in the kernel, and
Chapter 8 explains memory allocation.

Next we focus on hardware. Chapter 9 describes the management of I/O ports and
memory buffers that live on the device; after that comes interrupt handling, in
Chapter 10. Unfortunately, not everyone is able to run the sample code for these
chapters, because some hardware support is actually needed to test the software
interface interrupts. We've tried our best to keep required hardware support to a
minimum, but you still need some simple hardware, such as a standard parallel port,
to work with the sample code for these chapters.

Chapter 11 covers the use of data types in the kernel and the writing of portable
code.

The second half of the book is dedicated to more advanced topics. We start by get-
ting deeper into the hardware and, in particular, the functioning of specific periph-
eral buses. Chapter 12 covers the details of writing drivers for PCI devices, and
Chapter 13 examines the API for working with USB devices.

With an understanding of peripheral buses in place, we can take a detailed look at the
Linux device model, which is the abstraction layer used by the kernel to describe the
hardware and software resources it is managing. Chapter 14 is a bottom-up look at
the device model infrastructure, starting with the kobject type and working up from
there. It covers the integration of the device model with real hardware; it then uses
that knowledge to cover topics like hot-pluggable devices and power management.

In Chapter 15, we take a diversion into Linux memory management. This chapter
shows how to map kernel memory into user space (the mmap system call), map user
memory into kernel space (with get_user_pages), and how to map either kind of
memory into device space (to perform direct memory access [DMA] operations).

Overview of theBook | 13




é ,ch01.2168 Page 14 Thursday, January 20, 2005 9:21 AM

*

.

Our understanding of memory will be useful for the following two chapters, which
cover the other major driver classes. Chapter 16 introduces block drivers and shows
how they are different from the char drivers we have worked with so far. Then
Chapter 17 gets into the writing of network drivers. We finish up with a discussion
of serial drivers (Chapter 18) and a bibliography.
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CHAPTER 2

Building and Running
Modules

It’s almost time to begin programming. This chapter introduces all the essential con-
cepts about modules and kernel programming. In these few pages, we build and run
a complete (if relatively useless) module, and look at some of the basic code shared
by all modules. Developing such expertise is an essential foundation for any kind of
modularized driver. To avoid throwing in too many concepts at once, this chapter
talks only about modules, without referring to any specific device class.

All the kernel items (functions, variables, header files, and macros) that are intro-
duced here are described in a reference section at the end of the chapter.

Setting Up Your Test System

Starting with this chapter, we present example modules to demonstrate program-
ming concepts. (All of these examples are available on O’Reilly’s FTP site, as
explained in Chapter 1.) Building, loading, and modifying these examples are a good
way to improve your understanding of how drivers work and interact with the kernel.

The example modules should work with almost any 2.6.x kernel, including those
provided by distribution vendors. However, we recommend that you obtain a “main-
line” kernel directly from the kernel.org mirror network, and install it on your sys-
tem. Vendor kernels can be heavily patched and divergent from the mainline; at
times, vendor patches can change the kernel API as seen by device drivers. If you are
writing a driver that must work on a particular distribution, you will certainly want
to build and test against the relevant kernels. But, for the purpose of learning about
driver writing, a standard kernel is best.

Regardless of the origin of your kernel, building modules for 2.6.x requires that you
have a configured and built kernel tree on your system. This requirement is a change
from previous versions of the kernel, where a current set of header files was sulffi-
cient. 2.6 modules are linked against object files found in the kernel source tree; the
result is a more robust module loader, but also the requirement that those object files
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be available. So your first order of business is to come up with a kernel source tree
(either from the kernel.org network or your distributor’s kernel source package),
build a new kernel, and install it on your system. For reasons we’ll see later, life is
generally easiest if you are actually running the target kernel when you build your
modules, though this is not required.

You should also give some thought to where you do your module
S experimentation, development, and testing. We have done our best to

make our example modules safe and correct, but the possibility of
bugs is always present. Faults in kernel code can bring about the
demise of a user process or, occasionally, the entire system. They do
not normally create more serious problems, such as disk corruption.
Nonetheless, it is advisable to do your kernel experimentation on a
system that does not contain data that you cannot afford to lose, and
that does not perform essential services. Kernel hackers typically keep
a “sacrificial” system around for the purpose of testing new code.

So, if you do not yet have a suitable system with a configured and built kernel source
tree on disk, now would be a good time to set that up. We’ll wait. Once that task is
taken care of, you’ll be ready to start playing with kernel modules.

The Hello World Module

Many programming books begin with a “hello world” example as a way of showing
the simplest possible program. This book deals in kernel modules rather than pro-
grams; so, for the impatient reader, the following code is a complete “hello world”
module:

#include <linux/init.h>

#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");

static int hello init(void)

{
printk (KERN_ALERT "Hello, world\n");
return 0;
}
static void hello exit(void)
{
printk (KERN_ALERT "Goodbye, cruel world\n");
}

module_init(hello_init);
module exit(hello exit);

This module defines two functions, one to be invoked when the module is loaded
into the kernel (hello_init) and one for when the module is removed (hello_exit). The
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module_init and module_exit lines use special kernel macros to indicate the role of
these two functions. Another special macro (MODULE_LICENSE) is used to tell the
kernel that this module bears a free license; without such a declaration, the kernel
complains when the module is loaded.

The printk function is defined in the Linux kernel and made available to modules; it
behaves similarly to the standard C library function printf. The kernel needs its own
printing function because it runs by itself, without the help of the C library. The
module can call printk because, after insmod has loaded it, the module is linked to
the kernel and can access the kernel’s public symbols (functions and variables, as
detailed in the next section). The string KERN_ALERT is the priority of the message.”
We’ve specified a high priority in this module, because a message with the default
priority might not show up anywhere useful, depending on the kernel version you
are running, the version of the klogd daemon, and your configuration. You can
ignore this issue for now; we explain it in Chapter 4.

You can test the module with the insmod and rmmod utilities, as shown below. Note
that only the superuser can load and unload a module.

% make

make[1]: Entering directory "/usr/src/linux-2.6.10'
CC [M] /home/ldd3/src/misc-modules/hello.o
Building modules, stage 2.
MODPOST
cc /home/1dd3/src/misc-modules/hello.mod.o
LD [M] /home/ldd3/src/misc-modules/hello.ko

make[1]: Leaving directory "/usr/src/linux-2.6.10"

% su

root# insmod ./hello.ko

Hello, world

root# rmmod hello

Goodbye cruel world

root#

Please note once again that, for the above sequence of commands to work, you must
have a properly configured and built kernel tree in a place where the makefile is able
to find it (fusr/src/linux-2.6.10 in the example shown). We get into the details of how
modules are built in the section “Compiling and Loading.”

According to the mechanism your system uses to deliver the message lines, your out-
put may be different. In particular, the previous screen dump was taken from a text
console; if you are running insmod and rmmod from a terminal emulator running
under the window system, you won’t see anything on your screen. The message goes
to one of the system log files, such as /var/log/messages (the name of the actual file

* The priority is just a string, such as <1>, which is prepended to the printk format string. Note the lack of a
comma after KERN_ALERT; adding a comma there is a common and annoying typo (which, fortunately, is
caught by the compiler).
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varies between Linux distributions). The mechanism used to deliver kernel messages
is described in Chapter 4.

As you can see, writing a module is not as difficult as you might expect—at least, as
long as the module is not required to do anything worthwhile. The hard part is
understanding your device and how to maximize performance. We go deeper into
modularization throughout this chapter and leave device-specific issues for later
chapters.

Kernel Modules Versus Applications

Before we go further, it’s worth underlining the various differences between a kernel
module and an application.

While most small and medium-sized applications perform a single task from begin-
ning to end, every kernel module just registers itself in order to serve future requests,
and its initialization function terminates immediately. In other words, the task of the
module’s initialization function is to prepare for later invocation of the module’s
functions; it’s as though the module were saying, “Here I am, and this is what I can
do.” The module’s exit function (hello_exit in the example) gets invoked just before
the module is unloaded. It should tell the kernel, “I'm not there anymore; don’t ask
me to do anything else.” This kind of approach to programming is similar to event-
driven programming, but while not all applications are event-driven, each and every
kernel module is. Another major difference between event-driven applications and
kernel code is in the exit function: whereas an application that terminates can be lazy
in releasing resources or avoids clean up altogether, the exit function of a module
must carefully undo everything the init function built up, or the pieces remain
around until the system is rebooted.

Incidentally, the ability to unload a module is one of the features of modularization
that you’ll most appreciate, because it helps cut down development time; you can
test successive versions of your new driver without going through the lengthy shut-
down/reboot cycle each time.

As a programmer, you know that an application can call functions it doesn’t define:
the linking stage resolves external references using the appropriate library of func-
tions. printf is one of those callable functions and is defined in libc. A module, on the
other hand, is linked only to the kernel, and the only functions it can call are the
ones exported by the kernel; there are no libraries to link to. The printk function
used in hello.c earlier, for example, is the version of printf defined within the kernel
and exported to modules. It behaves similarly to the original function, with a few
minor differences, the main one being lack of floating-point support.

Figure 2-1 shows how function calls and function pointers are used in a module to
add new functionality to a running kernel.
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Figure 2-1. Linking a module to the kernel

Because no library is linked to modules, source files should never include the usual
header files, <stdarg.h> and very special situations being the only exceptions. Only
functions that are actually part of the kernel itself may be used in kernel modules.
Anything related to the kernel is declared in headers found in the kernel source tree
you have set up and configured; most of the relevant headers live in include/linux and
include/asm, but other subdirectories of include have been added to host material
associated to specific kernel subsystems.

The role of individual kernel headers is introduced throughout the book as each of
them is needed.

Another important difference between kernel programming and application pro-
gramming is in how each environment handles faults: whereas a segmentation fault
is harmless during application development and a debugger can always be used to
trace the error to the problem in the source code, a kernel fault kills the current pro-
cess at least, if not the whole system. We see how to trace kernel errors in Chapter 4.

User Space and Kernel Space

A module runs in kernel space, whereas applications run in user space. This concept
is at the base of operating systems theory.

The role of the operating system, in practice, is to provide programs with a consis-
tent view of the computer’s hardware. In addition, the operating system must
account for independent operation of programs and protection against unauthorized
access to resources. This nontrivial task is possible only if the CPU enforces protec-
tion of system software from the applications.
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Every modern processor is able to enforce this behavior. The chosen approach is to
implement different operating modalities (or levels) in the CPU itself. The levels have
different roles, and some operations are disallowed at the lower levels; program code
can switch from one level to another only through a limited number of gates. Unix
systems are designed to take advantage of this hardware feature, using two such lev-
els. All current processors have at least two protection levels, and some, like the x86
family, have more levels; when several levels exist, the highest and lowest levels are
used. Under Unix, the kernel executes in the highest level (also called supervisor
mode), where everything is allowed, whereas applications execute in the lowest level
(the so-called user mode), where the processor regulates direct access to hardware
and unauthorized access to memory.

We usually refer to the execution modes as kernel space and user space. These terms
encompass not only the different privilege levels inherent in the two modes, but also
the fact that each mode can have its own memory mapping—its own address
space—as well.

Unix transfers execution from user space to kernel space whenever an application
issues a system call or is suspended by a hardware interrupt. Kernel code executing a
system call is working in the context of a process—it operates on behalf of the call-
ing process and is able to access data in the process’s address space. Code that han-
dles interrupts, on the other hand, is asynchronous with respect to processes and is
not related to any particular process.

The role of a module is to extend kernel functionality; modularized code runs in ker-
nel space. Usually a driver performs both the tasks outlined previously: some func-
tions in the module are executed as part of system calls, and some are in charge of
interrupt handling.

Concurrency in the Kernel

One way in which kernel programming differs greatly from conventional application
programming is the issue of concurrency. Most applications, with the notable excep-
tion of multithreading applications, typically run sequentially, from the beginning to
the end, without any need to worry about what else might be happening to change
their environment. Kernel code does not run in such a simple world, and even the
simplest kernel modules must be written with the idea that many things can be hap-
pening at once.

There are a few sources of concurrency in kernel programming. Naturally, Linux sys-
tems run multiple processes, more than one of which can be trying to use your driver
at the same time. Most devices are capable of interrupting the processor; interrupt
handlers run asynchronously and can be invoked at the same time that your driver is
trying to do something else. Several software abstractions (such as kernel timers,
introduced in Chapter 7) run asynchronously as well. Moreover, of course, Linux
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can run on symmetric multiprocessor (SMP) systems, with the result that your driver
could be executing concurrently on more than one CPU. Finally, in 2.6, kernel code
has been made preemptible; this change causes even uniprocessor systems to have
many of the same concurrency issues as multiprocessor systems.

As a result, Linux kernel code, including driver code, must be reentrant—it must be
capable of running in more than one context at the same time. Data structures must
be carefully designed to keep multiple threads of execution separate, and the code
must take care to access shared data in ways that prevent corruption of the data.
Writing code that handles concurrency and avoids race conditions (situations in
which an unfortunate order of execution causes undesirable behavior) requires
thought and can be tricky. Proper management of concurrency is required to write
correct kernel code; for that reason, every sample driver in this book has been writ-
ten with concurrency in mind. The techniques used are explained as we come to
them; Chapter 5 has also been dedicated to this issue and the kernel primitives avail-
able for concurrency management.

A common mistake made by driver programmers is to assume that concurrency is
not a problem as long as a particular segment of code does not go to sleep (or
“block”). Even in previous kernels (which were not preemptive), this assumption
was not valid on multiprocessor systems. In 2.6, kernel code can (almost) never
assume that it can hold the processor over a given stretch of code. If you do not write
your code with concurrency in mind, it will be subject to catastrophic failures that
can be exceedingly difficult to debug.

The Current Process

Although kernel modules don’t execute sequentially as applications do, most actions
performed by the kernel are done on behalf of a specific process. Kernel code can
refer to the current process by accessing the global item current, defined in <asm/
current.h>, which yields a pointer to struct task_struct, defined by <linux/sched.h>.
The current pointer refers to the process that is currently executing. During the exe-
cution of a system call, such as open or read, the current process is the one that
invoked the call. Kernel code can use process-specific information by using current,
if it needs to do so. An example of this technique is presented in Chapter 6.

Actually, current is not truly a global variable. The need to support SMP systems
forced the kernel developers to develop a mechanism that finds the current process on
the relevant CPU. This mechanism must also be fast, since references to current hap-
pen frequently. The result is an architecture-dependent mechanism that, usually,
hides a pointer to the task_struct structure on the kernel stack. The details of the
implementation remain hidden to other kernel subsystems though, and a device
driver can just include <linux/sched.h> and refer to the current process. For example,
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the following statement prints the process ID and the command name of the current
process by accessing certain fields in struct task struct:
printk (KERN_INFO "The process is \"%s\" (pid %i)\n",
current->comm, current->pid);
The command name stored in current->comm is the base name of the program file
(trimmed to 15 characters if need be) that is being executed by the current process.

A Few Other Details

Kernel programming differs from user-space programming in many ways. We’ll
point things out as we get to them over the course of the book, but there are a few
fundamental issues which, while not warranting a section of their own, are worth a
mention. So, as you dig into the kernel, the following issues should be kept in mind.

Applications are laid out in virtual memory with a very large stack area. The stack, of
course, is used to hold the function call history and all automatic variables created by
currently active functions. The kernel, instead, has a very small stack; it can be as
small as a single, 4096-byte page. Your functions must share that stack with the
entire kernel-space call chain. Thus, it is never a good idea to declare large auto-
matic variables; if you need larger structures, you should allocate them dynamically
at call time.

Often, as you look at the kernel API, you will encounter function names starting with
a double underscore (__). Functions so marked are generally a low-level component
of the interface and should be used with caution. Essentially, the double underscore
says to the programmer: “If you call this function, be sure you know what you are
doing.”

Kernel code cannot do floating point arithmetic. Enabling floating point would
require that the kernel save and restore the floating point processor’s state on each
entry to, and exit from, kernel space—at least, on some architectures. Given that
there really is no need for floating point in kernel code, the extra overhead is not
worthwhile.

Compiling and Loading

The “hello world” example at the beginning of this chapter included a brief demon-
stration of building a module and loading it into the system. There is, of course, a lot
more to that whole process than we have seen so far. This section provides more
detail on how a module author turns source code into an executing subsystem within
the kernel.
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Compiling Modules

As the first step, we need to look a bit at how modules must be built. The build pro-
cess for modules differs significantly from that used for user-space applications; the
kernel is a large, standalone program with detailed and explicit requirements on how
its pieces are put together. The build process also differs from how things were done
with previous versions of the kernel; the new build system is simpler to use and pro-
duces more correct results, but it looks very different from what came before. The
kernel build system is a complex beast, and we just look at a tiny piece of it. The files
found in the Documentation/kbuild directory in the kernel source are required read-
ing for anybody wanting to understand all that is really going on beneath the surface.

There are some prerequisites that you must get out of the way before you can build
kernel modules. The first is to ensure that you have sufficiently current versions of the
compiler, module utilities, and other necessary tools. The file Documentation/Changes
in the kernel documentation directory always lists the required tool versions; you
should consult it before going any further. Trying to build a kernel (and its modules)
with the wrong tool versions can lead to no end of subtle, difficult problems. Note
that, occasionally, a version of the compiler that is too new can be just as problematic
as one that is too old; the kernel source makes a great many assumptions about the
compiler, and new releases can sometimes break things for a while.

If you still do not have a kernel tree handy, or have not yet configured and built that
kernel, now is the time to go do it. You cannot build loadable modules for a 2.6 ker-
nel without this tree on your filesystem. It is also helpful (though not required) to be
actually running the kernel that you are building for.

Once you have everything set up, creating a makefile for your module is straightfor-
ward. In fact, for the “hello world” example shown earlier in this chapter, a single
line will suffice:

obj-m := hello.o

Readers who are familiar with make, but not with the 2.6 kernel build system, are
likely to be wondering how this makefile works. The above line is not how a tradi-
tional makefile looks, after all. The answer, of course, is that the kernel build system
handles the rest. The assignment above (which takes advantage of the extended syn-
tax provided by GNU make) states that there is one module to be built from the
object file hello.o. The resulting module is named hello.ko after being built from the
object file.

If, instead, you have a module called module.ko that is generated from two source
files (called, say, filel.c and file2.c), the correct incantation would be:

obj-m := module.o
module-objs := filel.o file2.o

For a makefile like those shown above to work, it must be invoked within the con-
text of the larger kernel build system. If your kernel source tree is located in, say,
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your ~/kernel-2.6 directory, the make command required to build your module
(typed in the directory containing the module source and makefile) would be:

make -C ~/kernel-2.6 M="pwd™ modules

This command starts by changing its directory to the one provided with the -C
option (that is, your kernel source directory). There it finds the kernel’s top-level
makefile. The M= option causes that makefile to move back into your module source
directory before trying to build the modules target. This target, in turn, refers to the list
of modules found in the obj-m variable, which we’ve set to module.o in our examples.

Typing the previous make command can get tiresome after a while, so the kernel
developers have developed a sort of makefile idiom, which makes life easier for those
building modules outside of the kernel tree. The trick is to write your makefile as follows:
# If KERNELRELEASE is defined, we've been invoked from the
# kernel build system and can use its language.

ifneq ($(KERNELRELEASE),)
obj-m := hello.o

# Otherwise we were called directly from the command
# line; invoke the kernel build system.
else

KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)

default:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules

endif

Once again, we are seeing the extended GNU make syntax in action. This makefile is
read twice on a typical build. When the makefile is invoked from the command line,
it notices that the KERNELRELEASE variable has not been set. It locates the kernel source
directory by taking advantage of the fact that the symbolic link build in the installed
modules directory points back at the kernel build tree. If you are not actually run-
ning the kernel that you are building for, you can supply a KERNELDIR= option on the
command line, set the KERNELDIR environment variable, or rewrite the line that sets
KERNELDIR in the makefile. Once the kernel source tree has been found, the makefile
invokes the default: target, which runs a second make command (parameterized in
the makefile as $(MAKE)) to invoke the kernel build system as described previously.
On the second reading, the makefile sets obj-m, and the kernel makefiles take care of
actually building the module.

This mechanism for building modules may strike you as a bit unwieldy and obscure.
Once you get used to it, however, you will likely appreciate the capabilities that have
been programmed into the kernel build system. Do note that the above is not a com-
plete makefile; a real makefile includes the usual sort of targets for cleaning up
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*

unneeded files, installing modules, etc. See the makefiles in the example source
directory for a complete example.

Loading and Unloading Modules

After the module is built, the next step is loading it into the kernel. As we’ve already
pointed out, insmod does the job for you. The program loads the module code and
data into the kernel, which, in turn, performs a function similar to that of Id, in that
it links any unresolved symbol in the module to the symbol table of the kernel.
Unlike the linker, however, the kernel doesn’t modify the module’s disk file, but
rather an in-memory copy. insmod accepts a number of command-line options (for
details, see the manpage), and it can assign values to parameters in your module
before linking it to the current kernel. Thus, if a module is correctly designed, it can
be configured at load time; load-time configuration gives the user more flexibility
than compile-time configuration, which is still used sometimes. Load-time configura-
tion is explained in the section “Module Parameters,” later in this chapter.

Interested readers may want to look at how the kernel supports insmod: it relies on a
system call defined in kernel/module.c. The function sys_init_module allocates kernel
memory to hold a module (this memory is allocated with vmalloc; see the section
“vmalloc and Friends” in Chapter 8); it then copies the module text into that mem-
ory region, resolves kernel references in the module via the kernel symbol table, and
calls the module’s initialization function to get everything going.

If you actually look in the kernel source, you’ll find that the names of the system calls
are prefixed with sys . This is true for all system calls and no other functions; it’s
useful to keep this in mind when grepping for the system calls in the sources.

The modprobe utility is worth a quick mention. modprobe, like insmod, loads a mod-
ule into the kernel. It differs in that it will look at the module to be loaded to see
whether it references any symbols that are not currently defined in the kernel. If any
such references are found, modprobe looks for other modules in the current module
search path that define the relevant symbols. When modprobe finds those modules
(which are needed by the module being loaded), it loads them into the kernel as well.
If you use insmod in this situation instead, the command fails with an “unresolved
symbols” message left in the system logfile.

As mentioned before, modules may be removed from the kernel with the rmmod util-
ity. Note that module removal fails if the kernel believes that the module is still in
use (e.g., a program still has an open file for a device exported by the modules), or if
the kernel has been configured to disallow module removal. It is possible to config-
ure the kernel to allow “forced” removal of modules, even when they appear to be
busy. If you reach a point where you are considering using this option, however,
things are likely to have gone wrong badly enough that a reboot may well be the bet-
ter course of action.
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The Ismod program produces a list of the modules currently loaded in the kernel.
Some other information, such as any other modules making use of a specific mod-
ule, is also provided. Ismod works by reading the /proc/modules virtual file. Informa-
tion on currently loaded modules can also be found in the sysfs virtual filesystem
under /sys/module.

Version Dependency

Bear in mind that your module’s code has to be recompiled for each version of the
kernel that it is linked to—at least, in the absence of modversions, not covered here
as they are more for distribution makers than developers. Modules are strongly tied
to the data structures and function prototypes defined in a particular kernel version;
the interface seen by a module can change significantly from one kernel version to
the next. This is especially true of development kernels, of course.

The kernel does not just assume that a given module has been built against the
proper kernel version. One of the steps in the build process is to link your module
against a file (called vermagic.o) from the current kernel tree; this object contains a
fair amount of information about the kernel the module was built for, including the
target kernel version, compiler version, and the settings of a number of important
configuration variables. When an attempt is made to load a module, this informa-
tion can be tested for compatibility with the running kernel. If things don’t match,
the module is not loaded; instead, you see something like:

# insmod hello.ko

Error inserting './hello.ko': -1 Invalid module format
A look in the system log file (/var/log/messages or whatever your system is config-
ured to use) will reveal the specific problem that caused the module to fail to load.

If you need to compile a module for a specific kernel version, you will need to use the
build system and source tree for that particular version. A simple change to the
KERNELDIR variable in the example makefile shown previously does the trick.

Kernel interfaces often change between releases. If you are writing a module that is
intended to work with multiple versions of the kernel (especially if it must work
across major releases), you likely have to make use of macros and #ifdef constructs
to make your code build properly. This edition of this book only concerns itself with
one major version of the kernel, so you do not often see version tests in our example
code. But the need for them does occasionally arise. In such cases, you want to make
use of the definitions found in linux/version.h. This header file, automatically
included by linux/module.h, defines the following macros:
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UTS_RELEASE
This macro expands to a string describing the version of this kernel tree. For
example, "2.6.10".

LINUX_VERSION_CODE
This macro expands to the binary representation of the kernel version, one byte
for each part of the version release number. For example, the code for 2.6.10 is
132618 (i.e., 0x02060a).” With this information, you can (almost) easily deter-
mine what version of the kernel you are dealing with.

KERNEL VERSION(major,minor,release)
This is the macro used to build an integer version code from the individual num-
bers that build up a version number. For example, KERNEL VERSION(2,6,10)
expands to 132618. This macro is very useful when you need to compare the
current version and a known checkpoint.

Most dependencies based on the kernel version can be worked around with prepro-
cessor conditionals by exploiting KERNEL_VERSION and LINUX VERSION CODE. Version
dependency should, however, not clutter driver code with hairy #ifdef conditionals;
the best way to deal with incompatibilities is by confining them to a specific header
file. As a general rule, code which is explicitly version (or platform) dependent
should be hidden behind a low-level macro or function. High-level code can then
just call those functions without concern for the low-level details. Code written in
this way tends to be easier to read and more robust.

Platform Dependency

Each computer platform has its peculiarities, and kernel designers are free to exploit
all the peculiarities to achieve better performance in the target object file.

Unlike application developers, who must link their code with precompiled libraries
and stick to conventions on parameter passing, kernel developers can dedicate some
processor registers to specific roles, and they have done so. Moreover, kernel code
can be optimized for a specific processor in a CPU family to get the best from the tar-
get platform: unlike applications that are often distributed in binary format, a cus-
tom compilation of the kernel can be optimized for a specific computer set.

For example, the TA32 (x86) architecture has been subdivided into several different
processor types. The old 80386 processor is still supported (for now), even though
its instruction set is, by modern standards, quite limited. The more modern proces-
sors in this architecture have introduced a number of new capabilities, including
faster instructions for entering the kernel, interprocessor locking, copying data, etc.
Newer processors can also, when operated in the correct mode, employ 36-bit (or

* This allows up to 256 development versions between stable versions.
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larger) physical addresses, allowing them to address more than 4 GB of physical
memory. Other processor families have seen similar improvements. The kernel,
depending on various configuration options, can be built to make use of these addi-
tional features.

Clearly, if a module is to work with a given kernel, it must be built with the same
understanding of the target processor as that kernel was. Once again, the vermagic.o
object comes in to play. When a module is loaded, the kernel checks the processor-
specific configuration options for the module and makes sure they match the run-
ning kernel. If the module was compiled with different options, it is not loaded.

If you are planning to write a driver for general distribution, you may well be won-
dering just how you can possibly support all these different variations. The best
answer, of course, is to release your driver under a GPL-compatible license and con-
tribute it to the mainline kernel. Failing that, distributing your driver in source form
and a set of scripts to compile it on the user’s system may be the best answer. Some
vendors have released tools to make this task easier. If you must distribute your
driver in binary form, you need to look at the different kernels provided by your tar-
get distributions, and provide a version of the module for each. Be sure to take into
account any errata kernels that may have been released since the distribution was
produced. Then, there are licensing issues to be considered, as we discussed in the
section “License Terms” in Chapter 1. As a general rule, distributing things in source
form is an easier way to make your way in the world.

The Kernel Symbol Table

We've seen how insmod resolves undefined symbols against the table of public ker-
nel symbols. The table contains the addresses of global kernel items—functions and
variables—that are needed to implement modularized drivers. When a module is
loaded, any symbol exported by the module becomes part of the kernel symbol table.
In the usual case, a module implements its own functionality without the need to
export any symbols at all. You need to export symbols, however, whenever other
modules may benefit from using them.

New modules can use symbols exported by your module, and you can stack new
modules on top of other modules. Module stacking is implemented in the main-
stream kernel sources as well: the msdos filesystem relies on symbols exported by the
fat module, and each input USB device module stacks on the usbcore and input modules.

Module stacking is useful in complex projects. If a new abstraction is implemented in
the form of a device driver, it might offer a plug for hardware-specific implementa-
tions. For example, the video-for-linux set of drivers is split into a generic module that
exports symbols used by lower-level device drivers for specific hardware. According to
your setup, you load the generic video module and the specific module for your
installed hardware. Support for parallel ports and the wide variety of attachable
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devices is handled in the same way, as is the USB kernel subsystem. Stacking in the
parallel port subsystem is shown in Figure 2-2; the arrows show the communications
between the modules and with the kernel programming interface.

Low-level
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Figure 2-2. Stacking of parallel port driver modules

When using stacked modules, it is helpful to be aware of the modprobe utility. As we
described earlier, modprobe functions in much the same way as insmod, but it also
loads any other modules that are required by the module you want to load. Thus,
one modprobe command can sometimes replace several invocations of insmod
(although you’ll still need insmod when loading your own modules from the current
directory, because modprobe looks only in the standard installed module directories).

Using stacking to split modules into multiple layers can help reduce development
time by simplifying each layer. This is similar to the separation between mechanism
and policy that we discussed in Chapter 1.

The Linux kernel header files provide a convenient way to manage the visibility of
your symbols, thus reducing namespace pollution (filling the namespace with names
that may conflict with those defined elsewhere in the kernel) and promoting proper
information hiding. If your module needs to export symbols for other modules to
use, the following macros should be used.

EXPORT_SYMBOL (name) ;

EXPORT_SYMBOL_GPL(name);
Either of the above macros makes the given symbol available outside the module.
The _GPL version makes the symbol available to GPL-licensed modules only. Sym-
bols must be exported in the global part of the module’s file, outside of any func-
tion, because the macros expand to the declaration of a special-purpose variable that
is expected to be accessible globally. This variable is stored in a special part of the
module executible (an “ELF section”) that is used by the kernel at load time to find
the variables exported by the module. (Interested readers can look at <linux/module.h>
for the details, even though the details are not needed to make things work.)
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Preliminaries

We are getting closer to looking at some actual module code. But first, we need to
look at some other things that need to appear in your module source files. The ker-
nel is a unique environment, and it imposes its own requirements on code that
would interface with it.

Most kernel code ends up including a fairly large number of header files to get defini-
tions of functions, data types, and variables. We’ll examine these files as we come to
them, but there are a few that are specific to modules, and must appear in every load-
able module. Thus, just about all module code has the following;:

#include <linux/module.h>

#include <linux/init.h>
module.h contains a great many definitions of symbols and functions needed by load-
able modules. You need init.h to specify your initialization and cleanup functions, as
we saw in the “hello world” example above, and which we revisit in the next sec-
tion. Most modules also include moduleparam.h to enable the passing of parameters
to the module at load time; we will get to that shortly.

It is not strictly necessary, but your module really should specify which license
applies to its code. Doing so is just a matter of including a MODULE_LICENSE line:

MODULE_LICENSE("GPL");

The specific licenses recognized by the kernel are “GPL” (for any version of the GNU
General Public License), “GPL v2” (for GPL version two only), “GPL and additional
rights,” “Dual BSD/GPL,” “Dual MPL/GPL,” and “Proprietary.” Unless your mod-
ule is explicitly marked as being under a free license recognized by the kernel, it is
assumed to be proprietary, and the kernel is “tainted” when the module is loaded. As
we mentioned in the section “License Terms” in Chapter 1, kernel developers tend to
be unenthusiastic about helping users who experience problems after loading propri-
etary modules.

Other descriptive definitions that can be contained within a module include
MODULE_AUTHOR (stating who wrote the module), MODULE_DESCRIPTION (a human-read-
able statement of what the module does), MODULE_VERSION (for a code revision num-
ber; see the comments in <linux/module.h> for the conventions to use in creating
version strings), MODULE_ALIAS (another name by which this module can be known),
and MODULE_DEVICE TABLE (to tell user space about which devices the module sup-
ports). We'll discuss MODULE ALIAS in Chapter 11 and MODULE DEVICE TABLE in
Chapter 12.

The various MODULE _ declarations can appear anywhere within your source file out-
side of a function. A relatively recent convention in kernel code, however, is to put
these declarations at the end of the file.
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Initialization and Shutdown

As already mentioned, the module initialization function registers any facility offered
by the module. By facility, we mean a new functionality, be it a whole driver or a new
software abstraction, that can be accessed by an application. The actual definition of
the initialization function always looks like:

static int __init initialization_function(void)

{
}

module init(initialization function);

/* Initialization code here */

Initialization functions should be declared static, since they are not meant to be visi-
ble outside the specific file; there is no hard rule about this, though, as no function is
exported to the rest of the kernel unless explicitly requested. The __init token in the
definition may look a little strange; it is a hint to the kernel that the given function is
used only at initialization time. The module loader drops the initialization function
after the module is loaded, making its memory available for other uses. There is
a similar tag (__initdata) for data used only during initialization. Use of __init and
__initdata is optional, but it is worth the trouble. Just be sure not to use them for
any function (or data structure) you will be using after initialization completes. You
may also encounter __devinit and __ devinitdata in the kernel source; these trans-
late to __init and __initdata only if the kernel has not been configured for hotplug-
gable devices. We will look at hotplug support in Chapter 14.

The use of module_init is mandatory. This macro adds a special section to the mod-
ule’s object code stating where the module’s initialization function is to be found.
Without this definition, your initialization function is never called.

Modules can register many different types of facilities, including different kinds of
devices, filesystems, cryptographic transforms, and more. For each facility, there is a
specific kernel function that accomplishes this registration. The arguments passed to
the kernel registration functions are usually pointers to data structures describing the
new facility and the name of the facility being registered. The data structure usually
contains pointers to module functions, which is how functions in the module body
get called.

The items that can be registered go beyond the list of device types mentioned in
Chapter 1. They include, among others, serial ports, miscellaneous devices, sysfs
entries, /proc files, executable domains, and line disciplines. Many of those registra-
ble items support functions that aren’t directly related to hardware but remain in the
“software abstractions” field. Those items can be registered, because they are inte-
grated into the driver’s functionality anyway (like /proc files and line disciplines for
example).
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There are other facilities that can be registered as add-ons for certain drivers, but
their use is so specific that it’s not worth talking about them; they use the stacking
technique, as described in the section “The Kernel Symbol Table.” If you want to
probe further, you can grep for EXPORT_SYMBOL in the kernel sources, and find the
entry points offered by different drivers. Most registration functions are prefixed with
register , so another possible way to find them is to grep for register in the ker-
nel source.

The Cleanup Function

Every nontrivial module also requires a cleanup function, which unregisters inter-
faces and returns all resources to the system before the module is removed. This
function is defined as:

static void __exit cleanup_function(void)

{
}

/* Cleanup code here */

module exit(cleanup function);

The cleanup function has no value to return, so it is declared void. The _exit modi-
fier marks the code as being for module unload only (by causing the compiler to
place it in a special ELF section). If your module is built directly into the kernel,
orif your kernel is configured to disallow the unloading of modules, functions
marked __exit are simply discarded. For this reason, a function marked __exit can
be called only at module unload or system shutdown time; any other use is an error.
Once again, the module_exit declaration is necessary to enable to kernel to find your
cleanup function.

If your module does not define a cleanup function, the kernel does not allow it to be
unloaded.

Error Handling During Initialization

One thing you must always bear in mind when registering facilities with the kernel
is that the registration could fail. Even the simplest action often requires memory
allocation, and the required memory may not be available. So module code must
always check return values, and be sure that the requested operations have actually
succeeded.

If any errors occur when you register utilities, the first order of business is to decide
whether the module can continue initializing itself anyway. Often, the module can
continue to operate after a registration failure, with degraded functionality if neces-
sary. Whenever possible, your module should press forward and provide what capa-
bilities it can after things fail.
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If it turns out that your module simply cannot load after a particular type of failure,
you must undo any registration activities performed before the failure. Linux doesn’t
keep a per-module registry of facilities that have been registered, so the module must
back out of everything itself if initialization fails at some point. If you ever fail to
unregister what you obtained, the kernel is left in an unstable state; it contains inter-
nal pointers to code that no longer exists. In such situations, the only recourse, usu-
ally, is to reboot the system. You really do want to take care to do the right thing
when an initialization error occurs.

Error recovery is sometimes best handled with the goto statement. We normally hate
to use goto, but in our opinion, this is one situation where it is useful. Careful use of
goto in error situations can eliminate a great deal of complicated, highly-indented,
“structured” logic. Thus, in the kernel, goto is often used as shown here to deal with
errors.

The following sample code (using fictitious registration and unregistration func-
tions) behaves correctly if initialization fails at any point:
int __init my init function(void)

{

int err;

/* registration takes a pointer and a name */
err = register this(ptr1, "skull");

if (err) goto fail this;

err = register that(ptr2, "skull");

if (err) goto fail that;

err = register those(ptr3, "skull");

if (err) goto fail those;

return 0; /* success */

fail_those: unregister that(ptr2, "skull");

fail that: unregister this(ptri, "skull");

fail this: return err; /* propagate the error */

}
This code attempts to register three (fictitious) facilities. The goto statement is used
in case of failure to cause the unregistration of only the facilities that had been suc-
cessfully registered before things went bad.

Another option, requiring no hairy goto statements, is keeping track of what has
been successfully registered and calling your module’s cleanup function in case of
any error. The cleanup function unrolls only the steps that have been successfully
accomplished. This alternative, however, requires more code and more CPU time, so
in fast paths you still resort to goto as the best error-recovery tool.

The return value of my_init_function, err, is an error code. In the Linux kernel, error
codes are negative numbers belonging to the set defined in <linux/errno.h>. If you
want to generate your own error codes instead of returning what you get from other
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functions, you should include <linux/errno.h> in order to use symbolic values such
as -ENODEV, -ENOMEM, and so on. It is always good practice to return appropriate error
codes, because user programs can turn them to meaningful strings using perror or
similar means.

Obviously, the module cleanup function must undo any registration performed by
the initialization function, and it is customary (but not usually mandatory) to unreg-
ister facilities in the reverse order used to register them:

void __exit my cleanup_function(void)

{
unregister those(ptr3, "skull");
unregister that(ptr2, "skull");
unregister this(ptri, "skull");
return;

}

If your initialization and cleanup are more complex than dealing with a few items,
the goto approach may become difficult to manage, because all the cleanup code
must be repeated within the initialization function, with several labels intermixed.
Sometimes, therefore, a different layout of the code proves more successful.

What you’d do to minimize code duplication and keep everything streamlined is to
call the cleanup function from within the initialization whenever an error occurs.
The cleanup function then must check the status of each item before undoing its reg-
istration. In its simplest form, the code looks like the following:

struct something *item1;
struct somethingelse *item2;
int stuff ok;

void my cleanup(void)
{
if (item1)
release thing(item1);
if (item2)
release_thing2(item2);
if (stuff_ok)
unregister stuff();
return;

int __init my init(void)
int err = -ENOMEM;

item1 = allocate thing(arguments);
item2 = allocate thing2(arguments2);
if (litem2 || !item2)

goto fail;
err = register stuff(item1, item2);
if (lerr)
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stuff ok = 1;
else
goto fail;
return 0; /* success */

fail:
my_cleanup();
return err;
}

As shown in this code, you may or may not need external flags to mark success of the
initialization step, depending on the semantics of the registration/allocation function
you call. Whether or not flags are needed, this kind of initialization scales well to a
large number of items and is often better than the technique shown earlier. Note,
however, that the cleanup function cannot be marked _exit when it is called by
nonexit code, as in the previous example.

Module-Loading Races

Thus far, our discussion has skated over an important aspect of module loading: race
conditions. If you are not careful in how you write your initialization function, you
can create situations that can compromise the stability of the system as a whole. We
will discuss race conditions later in this book; for now, a couple of quick points will
have to suffice.

The first is that you should always remember that some other part of the kernel can
make use of any facility you register immediately after that registration has com-
pleted. It is entirely possible, in other words, that the kernel will make calls into your
module while your initialization function is still running. So your code must be pre-
pared to be called as soon as it completes its first registration. Do not register any
facility until all of your internal initialization needed to support that facility has been
completed.

You must also consider what happens if your initialization function decides to fail,
but some part of the kernel is already making use of a facility your module has regis-
tered. If this situation is possible for your module, you should seriously consider not
failing the initialization at all. After all, the module has clearly succeeded in export-
ing something useful. If initialization must fail, it must carefully step around any pos-
sible operations going on elsewhere in the kernel until those operations have
completed.

Module Parameters

Several parameters that a driver needs to know can change from system to system.
These can vary from the device number to use (as we’ll see in the next chapter) to
numerous aspects of how the driver should operate. For example, drivers for SCSI
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adapters often have options controlling the use of tagged command queuing, and the
Integrated Device Electronics (IDE) drivers allow user control of DMA operations. If
your driver controls older hardware, it may also need to be told explicitly where to
find that hardware’s I/O ports or I/O memory addresses. The kernel supports these
needs by making it possible for a driver to designate parameters that may be changed
when the driver’s module is loaded.

These parameter values can be assigned at load time by insmod or modprobe; the lat-
ter can also read parameter assignment from its configuration file (/etc/modprobe.
conf). The commands accept the specification of several types of values on the com-
mand line. As a way of demonstrating this capability, imagine a much-needed
enhancement to the “hello world” module (called hellop) shown at the beginning of
this chapter. We add two parameters: an integer value called howmany and a character
string called whom. Our vastly more functional module then, at load time, greets whom
not just once, but howmany times. Such a module could then be loaded with a com-
mand line such as:

insmod hellop howmany=10 whom="Mom"
Upon being loaded that way, hellop would say “Hello, Mom” 10 times.

However, before insmod can change module parameters, the module must make
them available. Parameters are declared with the module param macro, which is
defined in moduleparam.h. module param takes three parameters: the name of the
variable, its type, and a permissions mask to be used for an accompanying sysfs
entry. The macro should be placed outside of any function and is typically found
near the head of the source file. So hellop would declare its parameters and make
them available to insmod as follows:

static char *whom = "world";

static int howmany = 1;

module_param(howmany, int, S_IRUGO);
module param(whom, charp, S IRUGO);

Numerous types are supported for module parameters:

bool

invbool
A boolean (true or false) value (the associated variable should be of type int).
The invbool type inverts the value, so that true values become false and vice
versa.

charp
A char pointer value. Memory is allocated for user-provided strings, and the
pointer is set accordingly.
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int

long

short

uint

ulong

ushort
Basic integer values of various lengths. The versions starting with u are for
unsigned values.

Array parameters, where the values are supplied as a comma-separated list, are also
supported by the module loader. To declare an array parameter, use:

module_param_array(name,type,num,perm);

Where name is the name of your array (and of the parameter), type is the type of the
array elements, num is an integer variable, and perm is the usual permissions value. If
the array parameter is set at load time, num is set to the number of values supplied.
The module loader refuses to accept more values than will fit in the array.

If you really need a type that does not appear in the list above, there are hooks in the
module code that allow you to define them; see moduleparam.h for details on how to
do that. All module parameters should be given a default value; insmod changes the
value only if explicitly told to by the user. The module can check for explicit parame-
ters by testing parameters against their default values.

The final module_param field is a permission value; you should use the definitions
found in <linux/stat.h>. This value controls who can access the representation of the
module parameter in sysfs. If perm is set to 0, there is no sysfs entry at all; otherwise,
it appears under /sys/module” with the given set of permissions. Use S_IRUGO for a
parameter that can be read by the world but cannot be changed; S _TRUGO|S_IWUSR
allows root to change the parameter. Note that if a parameter is changed by sysfs, the
value of that parameter as seen by your module changes, but your module is not
notified in any other way. You should probably not make module parameters writ-
able, unless you are prepared to detect the change and react accordingly.

Doing Itin User Space

A Unix programmer who’s addressing kernel issues for the first time might be ner-
vous about writing a module. Writing a user program that reads and writes directly
to the device ports may be easier.

Indeed, there are some arguments in favor of user-space programming, and some-
times writing a so-called user-space device driver is a wise alternative to kernel hack-
ing. In this section, we discuss some of the reasons why you might write a driver in

* As of this writing, there is talk of moving parameters elsewhere within sysfs, however.
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user space. This book is about kernel-space drivers, however, so we do not go
beyond this introductory discussion.

The advantages of user-space drivers are:

* The full C library can be linked in. The driver can perform many exotic tasks
without resorting to external programs (the utility programs implementing usage
policies that are usually distributed along with the driver itself).

* The programmer can run a conventional debugger on the driver code without
having to go through contortions to debug a running kernel.

* If a user-space driver hangs, you can simply kill it. Problems with the driver are
unlikely to hang the entire system, unless the hardware being controlled is really
misbehaving.

* User memory is swappable, unlike kernel memory. An infrequently used device
with a huge driver won’t occupy RAM that other programs could be using,
except when it is actually in use.

* A well-designed driver program can still, like kernel-space drivers, allow concur-
rent access to a device.

* If you must write a closed-source driver, the user-space option makes it easier for
you to avoid ambiguous licensing situations and problems with changing kernel
interfaces.

For example, USB drivers can be written for user space; see the (still young) libusb
project at libusb.sourceforge.net and “gadgetfs” in the kernel source. Another exam-
ple is the X server: it knows exactly what the hardware can do and what it can’t, and
it offers the graphic resources to all X clients. Note, however, that there is a slow but
steady drift toward frame-buffer-based graphics environments, where the X server
acts only as a server based on a real kernel-space device driver for actual graphic
manipulation.

Usually, the writer of a user-space driver implements a server process, taking over
from the kernel the task of being the single agent in charge of hardware control. Cli-
ent applications can then connect to the server to perform actual communication
with the device; therefore, a smart driver process can allow concurrent access to the
device. This is exactly how the X server works.

But the user-space approach to device driving has a number of drawbacks. The most
important are:

* Interrupts are not available in user space. There are workarounds for this limita-
tion on some platforms, such as the vm86 system call on the TA32 architecture.

* Direct access to memory is possible only by mmapping /dev/mem, and only a
privileged user can do that.

* Access to I/O ports is available only after calling ioperm or iopl. Moreover, not
all platforms support these system calls, and access to /dev/port can be too slow
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to be effective. Both the system calls and the device file are reserved to a privi-
leged user.

* Response time is slower, because a context switch is required to transfer infor-
mation or actions between the client and the hardware.

* Worse yet, if the driver has been swapped to disk, response time is unacceptably
long. Using the mlock system call might help, but usually you’ll need to lock
many memory pages, because a user-space program depends on a lot of library
code. mlock, too, is limited to privileged users.

* The most important devices can’t be handled in user space, including, but not
limited to, network interfaces and block devices.

As you see, user-space drivers can’t do that much after all. Interesting applications
nonetheless exist: for example, support for SCSI scanner devices (implemented by
the SANE package) and CD writers (implemented by cdrecord and other tools). In
both cases, user-level device drivers rely on the “SCSI generic” kernel driver, which
exports low-level SCSI functionality to user-space programs so they can drive their
own hardware.

One case in which working in user space might make sense is when you are begin-
ning to deal with new and unusual hardware. This way you can learn to manage your
hardware without the risk of hanging the whole system. Once you’ve done that,
encapsulating the software in a kernel module should be a painless operation.

Quick Reference

This section summarizes the kernel functions, variables, macros, and /proc files that
we’ve touched on in this chapter. It is meant to act as a reference. Each item is listed
after the relevant header file, if any. A similar section appears at the end of almost
every chapter from here on, summarizing the new symbols introduced in the chap-
ter. Entries in this section generally appear in the same order in which they were
introduced in the chapter:

insmod

modprobe

rmmod
User-space utilities that load modules into the running kernels and remove
them.

#include <linux/init.h>
module_init(init function);
module exit(cleanup function);
Macros that designate a module’s initialization and cleanup functions.
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_init

__initdata

__exit

__exitdata
Markers for functions (__init and __exit) and data (__initdata and __exitdata)
that are only used at module initialization or cleanup time. Items marked for ini-
tialization may be discarded once initialization completes; the exit items may be
discarded if module unloading has not been configured into the kernel. These
markers work by causing the relevant objects to be placed in a special ELF sec-
tion in the executable file.

#include <linux/sched.h>
One of the most important header files. This file contains definitions of much of
the kernel API used by the driver, including functions for sleeping and numer-
ous variable declarations.

struct task_struct *current;
The current process.
current->pid
current->comm
The process ID and command name for the current process.
obj-m
A makefile symbol used by the kernel build system to determine which modules
should be built in the current directory.

/sys/module

/proc/modules
/sys/module is a sysfs directory hierarchy containing information on currently-
loaded modules. /proc/modules is the older, single-file version of that informa-
tion. Entries contain the module name, the amount of memory each module
occupies, and the usage count. Extra strings are appended to each line to specify
flags that are currently active for the module.

vermagic.o
An object file from the kernel source directory that describes the environment a
module was built for.
#include <linux/module.h>
Required header. It must be included by a module source.
#include <linux/version.h>
A header file containing information on the version of the kernel being built.
LINUX VERSION_ CODE
Integer macro, useful to #ifdef version dependencies.
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EXPORT_SYMBOL (symbol);

EXPORT_SYMBOL GPL (symbol);
Macro used to export a symbol to the kernel. The second form exports without
using versioning information, and the third limits the export to GPL-licensed
modules.

MODULE_AUTHOR (author);
MODULE_DESCRIPTION(description);
MODULE_VERSION(version string);
MODULE _DEVICE TABLE(table info);
MODULE ALIAS(alternate name);
Place documentation on the module in the object file.
module_init(init function);
module exit(exit function);
Macros that declare a module’s initialization and cleanup functions.

#include <linux/moduleparam.h>

module param(variable, type, perm);
Macro that creates a module parameter that can be adjusted by the user when
the module is loaded (or at boot time for built-in code). The type can be one of
bool, charp, int, invbool, long, short, ushort, uint, ulong, or intarray

#include <linux/kernel.h>
int printk(const char * fmt, ...);
The analogue of printf for kernel code.
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CHAPTER 3
Char Drivers

The goal of this chapter is to write a complete char device driver. We develop a char-
acter driver because this class is suitable for most simple hardware devices. Char
drivers are also easier to understand than block drivers or network drivers (which we
get to in later chapters). Our ultimate aim is to write a modularized char driver, but
we won'’t talk about modularization issues in this chapter.

Throughout the chapter, we present code fragments extracted from a real device
driver: scull (Simple Character Utility for Loading Localities). scull is a char driver
that acts on a memory area as though it were a device. In this chapter, because of
that peculiarity of scull, we use the word device interchangeably with “the memory
area used by scull.”

The advantage of scull is that it isn’t hardware dependent. scull just acts on some
memory, allocated from the kernel. Anyone can compile and run scull, and scull is
portable across the computer architectures on which Linux runs. On the other hand,
the device doesn’t do anything “useful” other than demonstrate the interface
between the kernel and char drivers and allow the user to run some tests.

The Design of scull

The first step of driver writing is defining the capabilities (the mechanism) the driver
will offer to user programs. Since our “device” is part of the computer’s memory,
we're free to do what we want with it. It can be a sequential or random-access
device, one device or many, and so on.

To make scull useful as a template for writing real drivers for real devices, we’ll show
you how to implement several device abstractions on top of the computer memory,
each with a different personality.

The scull source implements the following devices. Each kind of device implemented
by the module is referred to as a type.
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*

scull0 to scull3
Four devices, each consisting of a memory area that is both global and persis-
tent. Global means that if the device is opened multiple times, the data con-
tained within the device is shared by all the file descriptors that opened it.
Persistent means that if the device is closed and reopened, data isn’t lost. This
device can be fun to work with, because it can be accessed and tested using con-
ventional commands, such as ¢p, cat, and shell I/O redirection.

scullpipeO to scullpipe3

Four FIFO (first-in-first-out) devices, which act like pipes. One process reads
what another process writes. If multiple processes read the same device, they
contend for data. The internals of scullpipe will show how blocking and non-
blocking read and write can be implemented without having to resort to inter-
rupts. Although real drivers synchronize with their devices using hardware
interrupts, the topic of blocking and nonblocking operations is an important one
and is separate from interrupt handling (covered in Chapter 10).

scullsingle

scullpriv

sculluid

scullwuid
These devices are similar to scull0 but with some limitations on when an open is
permitted. The first (scullsingle) allows only one process at a time to use the
driver, whereas scullpriv is private to each virtual console (or X terminal ses-
sion), because processes on each console/terminal get different memory areas.
sculluid and scullwuid can be opened multiple times, but only by one user at a
time; the former returns an error of “Device Busy” if another user is locking the
device, whereas the latter implements blocking open. These variations of scull
would appear to be confusing policy and mechanism, but they are worth look-
ing at, because some real-life devices require this sort of management.

Each of the scull devices demonstrates different features of a driver and presents dif-
ferent difficulties. This chapter covers the internals of scull0 to scull3; the more
advanced devices are covered in Chapter 6. scullpipe is described in the section “A
Blocking I/O Example,” and the others are described in “Access Control on a Device
File.”

Major and Minor Numbers

Char devices are accessed through names in the filesystem. Those names are called
special files or device files or simply nodes of the filesystem tree; they are convention-
ally located in the /dev directory. Special files for char drivers are identified by a “c”
in the first column of the output of Is —I. Block devices appear in /dev as well, but
they are identified by a “b.” The focus of this chapter is on char devices, but much of

the following information applies to block devices as well.
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If you issue the Is -] command, you’ll see two numbers (separated by a comma) in
the device file entries before the date of the last modification, where the file length
normally appears. These numbers are the major and minor device number for the
particular device. The following listing shows a few devices as they appear on a typi-
cal system. Their major numbers are 1, 4, 7, and 10, while the minors are 1, 3, 5, 64,

65, and 129.
CIW-TW-TW- 1 root root 1, 3 Apr 11 2002 null
CIW------- 1 root root 10, 1 Apr 11 2002 psaux
CIW------- 1 root root 4, 1 0ct 28 03:04 tty1
CIW-TW-TW- 1 root tty 4, 64 Apr 11 2002 ttyso
CIW-TW---- 1 root uucp 4, 65 Apr 11 2002 ttyS1
CIW--W---- 1 vcsa tty 7, 1 Apr 11 2002 vcsl
CIW--W---- 1 vcsa tty 7, 129 Apr 11 2002 vcsal
CIW-TW-IW- 1 root root 1, 5 Apr 11 2002 zero

Traditionally, the major number identifies the driver associated with the device. For
example, /dev/null and /dev/zero are both managed by driver 1, whereas virtual con-
soles and serial terminals are managed by driver 4; similarly, both ves1 and vesal
devices are managed by driver 7. Modern Linux kernels allow multiple drivers to
share major numbers, but most devices that you will see are still organized on the
one-major-one-driver principle.

The minor number is used by the kernel to determine exactly which device is being
referred to. Depending on how your driver is written (as we will see below), you can
either get a direct pointer to your device from the kernel, or you can use the minor
number yourself as an index into a local array of devices. Either way, the kernel itself
knows almost nothing about minor numbers beyond the fact that they refer to
devices implemented by your driver.

The Internal Representation of Device Numbers

Within the kernel, the dev_t type (defined in <linux/types.h>) is used to hold device
numbers—both the major and minor parts. As of Version 2.6.0 of the kernel, dev_t is
a 32-bit quantity with 12 bits set aside for the major number and 20 for the minor
number. Your code should, of course, never make any assumptions about the inter-
nal organization of device numbers; it should, instead, make use of a set of macros
found in <linux/kdev_t.h>. To obtain the major or minor parts of a dev_t, use:
MAJOR(dev_t dev);
MINOR(dev_t dev);
If, instead, you have the major and minor numbers and need to turn them into a dev_t,
use:

MKDEV(int major, int minor);

Note that the 2.6 kernel can accommodate a vast number of devices, while previous
kernel versions were limited to 255 major and 255 minor numbers. One assumes
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that the wider range will be sufficient for quite some time, but the computing field is
littered with erroneous assumptions of that nature. So you should expect that the
format of dev_t could change again in the future; if you write your drivers carefully,
however, these changes will not be a problem.

Allocating and Freeing Device Numbers

One of the first things your driver will need to do when setting up a char device is to
obtain one or more device numbers to work with. The necessary function for this
task is register_chrdev_region, which is declared in <linux/fs.h>:
int register chrdev region(dev_t first, unsigned int count,
char *name);
Here, first is the beginning device number of the range you would like to allocate.
The minor number portion of first is often 0, but there is no requirement to that
effect. count is the total number of contiguous device numbers you are requesting.
Note that, if count is large, the range you request could spill over to the next major
number; but everything will still work properly as long as the number range you
request is available. Finally, name is the name of the device that should be associated
with this number range; it will appear in /proc/devices and sysfs.

As with most kernel functions, the return value from register_chrdev_region will be 0
if the allocation was successfully performed. In case of error, a negative error code
will be returned, and you will not have access to the requested region.

register_chrdev_region works well if you know ahead of time exactly which device
numbers you want. Often, however, you will not know which major numbers your
device will use; there is a constant effort within the Linux kernel development com-
munity to move over to the use of dynamicly-allocated device numbers. The kernel
will happily allocate a major number for you on the fly, but you must request this
allocation by using a different function:
int alloc_chrdev _region(dev_t *dev, unsigned int firstminor,
unsigned int count, char *name);

With this function, dev is an output-only parameter that will, on successful comple-
tion, hold the first number in your allocated range. firstminor should be the
requested first minor number to use; it is usually 0. The count and name parameters
work like those given to request_chrdev_region.

Regardless of how you allocate your device numbers, you should free them when
they are no longer in use. Device numbers are freed with:

void unregister chrdev region(dev_t first, unsigned int count);

The usual place to call unregister_chrdev_region would be in your module’s cleanup
function.
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The above functions allocate device numbers for your driver’s use, but they do not
tell the kernel anything about what you will actually do with those numbers. Before a
user-space program can access one of those device numbers, your driver needs to
connect them to its internal functions that implement the device’s operations. We
will describe how this connection is accomplished shortly, but there are a couple of
necessary digressions to take care of first.

Dynamic Allocation of Major Numbers

Some major device numbers are statically assigned to the most common devices. A
list of those devices can be found in Documentation/devices.txt within the kernel
source tree. The chances of a static number having already been assigned for the use
of your new driver are small, however, and new numbers are not being assigned. So,
as a driver writer, you have a choice: you can simply pick a number that appears to
be unused, or you can allocate major numbers in a dynamic manner. Picking a num-
ber may work as long as the only user of your driver is you; once your driver is more
widely deployed, a randomly picked major number will lead to conflicts and trouble.

Thus, for new drivers, we strongly suggest that you use dynamic allocation to obtain
your major device number, rather than choosing a number randomly from the ones
that are currently free. In other words, your drivers should almost certainly be using
alloc_chrdev_region rather than register_chrdev_region.

The disadvantage of dynamic assignment is that you can’t create the device nodes in
advance, because the major number assigned to your module will vary. For normal
use of the driver, this is hardly a problem, because once the number has been
assigned, you can read it from /proc/devices.”

To load a driver using a dynamic major number, therefore, the invocation of insmod
can be replaced by a simple script that, after calling insmod, reads /proc/devices in
order to create the special file(s).

A typical /proc/devices file looks like the following:

Character devices:
1 mem

2 pty

3 ttyp

4 ttys

6 1p

7 vcs

10 misc

13 input

14 sound

* Even better device information can usually be obtained from sysfs, generally mounted on /sys on 2.6-based
systems. Getting scull to export information via sysfs is beyond the scope of this chapter, however; we’ll
return to this topic in Chapter 14.
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21 sg
180 usb

Block devices:
2 fd

8 sd

11 sy

65 sd

66 sd

The script to load a module that has been assigned a dynamic number can, there-

fore, be written using a tool such as awk to retrieve information from /proc/devices in
order to create the files in /dev.

The following script, scull_load, is part of the scull distribution. The user of a driver
that is distributed in the form of a module can invoke such a script from the sys-
tem’s rc.local file or call it manually whenever the module is needed.

#1/bin/sh
module="scull"
device="scull"
mode="664"

# invoke insmod with all arguments we got
# and use a pathname, as newer modutils don't look in . by default
/sbin/insmod ./$module.ko $* || exit 1

# remove stale nodes
m -f /dev/${device}[0-3]

major=$(awk "\\$2==\"$module\" {print \\$1}" /proc/devices)

mknod /dev/${device}0 c $major
mknod /dev/${device}1 c $major
mknod /dev/${device}2 c $major
mknod /dev/${device}3 c $major

w N P O

# give appropriate group/permissions, and change the group.

# Not all distributions have staff, some have "wheel" instead.
group="staff"

grep -q '“staff:' /etc/group || group="wheel"

chgrp $group /dev/${device}[0-3]

chmod $mode /dev/${device}[0-3]
The script can be adapted for another driver by redefining the variables and adjust-
ing the mknod lines. The script just shown creates four devices because four is the
default in the scull sources.

The last few lines of the script may seem obscure: why change the group and mode
of a device? The reason is that the script must be run by the superuser, so newly cre-
ated special files are owned by root. The permission bits default so that only root has
write access, while anyone can get read access. Normally, a device node requires a
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different access policy, so in some way or another access rights must be changed.
The default in our script is to give access to a group of users, but your needs may
vary. In the section “Access Control on a Device File” in Chapter 6, the code for scul-
luid demonstrates how the driver can enforce its own kind of authorization for device
access.

A scull_unload script is also available to clean up the /dev directory and remove the
module.

As an alternative to using a pair of scripts for loading and unloading, you could write
an init script, ready to be placed in the directory your distribution uses for these
scripts.” As part of the scull source, we offer a fairly complete and configurable exam-
ple of an init script, called scull.init; it accepts the conventional arguments—start,
stop, and restart—and performs the role of both scull_load and scull_unload.

If repeatedly creating and destroying /dev nodes sounds like overkill, there is a useful
workaround. If you are loading and unloading only a single driver, you can just use
rmmod and insmod after the first time you create the special files with your script:
dynamic numbers are not randomized,’ and you can count on the same number
being chosen each time if you don’t load any other (dynamic) modules. Avoiding
lengthy scripts is useful during development. But this trick, clearly, doesn’t scale to
more than one driver at a time.

The best way to assign major numbers, in our opinion, is by defaulting to dynamic
allocation while leaving yourself the option of specifying the major number at load
time, or even at compile time. The scull implementation works in this way; it uses a
global variable, scull major, to hold the chosen number (there is also a scull minor
for the minor number). The variable is initialized to SCULL_MAJOR, defined in scull.h.
The default value of SCULL MAJOR in the distributed source is 0, which means “use
dynamic assignment.” The user can accept the default or choose a particular major
number, either by modifying the macro before compiling or by specifying a value for
scull major on the insmod command line. Finally, by using the scull_load script, the
user can pass arguments to insmod on scull_load’s command line.¥

Here’s the code we use in scull’s source to get a major number:

if (scull major) {

dev = MKDEV(scull_major, scull minor);

result = register chrdev_region(dev, scull nr_devs, "scull");
} else {

result = alloc_chrdev_region(&dev, scull minor, scull nr_devs,

* The Linux Standard Base specifies that init scripts should be placed in /etc/init.d, but some distributions still
place them elsewhere. In addition, if your script is to be run at boot time, you need to make a link to it from
the appropriate run-level directory (i.e., .../rc3.d).

t Though certain kernel developers have threatened to do exactly that in the future.

1 The init script scull.init doesn’t accept driver options on the command line, but it supports a configuration
file, because it’s designed for automatic use at boot and shutdown time.

48 | Chapter3: Char Drivers

4~ ~4]e



é ,ch03.22228 Page 49 Friday, January 21, 2005 1:32 PM

"scull");
scull major = MAJOR(dev);

}
if (result < 0) {

printk (KERN_WARNING "scull: can't get major %d\n", scull major);
return result;

}
Almost all of the sample drivers used in this book use similar code for their major
number assignment.

Some Important Data Structures

As you can imagine, device number registration is just the first of many tasks that
driver code must carry out. We will soon look at other important driver compo-
nents, but one other digression is needed first. Most of the fundamental driver opera-
tions involve three important kernel data structures, called file operations, file,
and inode. A basic familiarity with these structures is required to be able to do much
of anything interesting, so we will now take a quick look at each of them before get-
ting into the details of how to implement the fundamental driver operations.

File Operations

So far, we have reserved some device numbers for our use, but we have not yet con-
nected any of our driver’s operations to those numbers. The file operations struc-
ture is how a char driver sets up this connection. The structure, defined in <linux/fs.h>,
is a collection of function pointers. Each open file (represented internally by a file
structure, which we will examine shortly) is associated with its own set of functions
(by including a field called f op that points to a file operations structure). The
operations are mostly in charge of implementing the system calls and are therefore,
named open, read, and so on. We can consider the file to be an “object” and the
functions operating on it to be its “methods,” using object-oriented programming
terminology to denote actions declared by an object to act on itself. This is the first
sign of object-oriented programming we see in the Linux kernel, and we’ll see more
in later chapters.

Conventionally, a file operations structure or a pointer to one is called fops (or
some variation thereof). Each field in the structure must point to the function in the
driver that implements a specific operation, or be left NULL for unsupported opera-
tions. The exact behavior of the kernel when a NULL pointer is specified is different
for each function, as the list later in this section shows.

The following list introduces all the operations that an application can invoke on a
device. We’ve tried to keep the list brief so it can be used as a reference, merely sum-
marizing each operation and the default kernel behavior when a NULL pointer is used.
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As you read through the list of file operations methods, you will note that a num-
ber of parameters include the string __user. This annotation is a form of documenta-
tion, noting that a pointer is a user-space address that cannot be directly
dereferenced. For normal compilation, __user has no effect, but it can be used by
external checking software to find misuse of user-space addresses.

The rest of the chapter, after describing some other important data structures,
explains the role of the most important operations and offers hints, caveats, and real
code examples. We defer discussion of the more complex operations to later chap-
ters, because we aren’t ready to dig into topics such as memory management, block-
ing operations, and asynchronous notification quite yet.

struct module *owner
The first file operations field is not an operation at all; it is a pointer to the
module that “owns” the structure. This field is used to prevent the module from
being unloaded while its operations are in use. Almost all the time, it is simply
initialized to THIS_MODULE, a macro defined in <linux/module.h>.

loff t (*1llseek) (struct file *, loff t, int);
The llseek method is used to change the current read/write position in a file, and
the new position is returned as a (positive) return value. The loff t parameter is
a “long offset” and is at least 64 bits wide even on 32-bit platforms. Errors are
signaled by a negative return value. If this function pointer is NULL, seek calls will
modify the position counter in the file structure (described in the section “The
file Structure”) in potentially unpredictable ways.

ssize t (*read) (struct file *, char _ user *, size t, loff t *);
Used to retrieve data from the device. A null pointer in this position causes the
read system call to fail with -EINVAL (“Invalid argument”). A nonnegative return
value represents the number of bytes successfully read (the return value is a
“signed size” type, usually the native integer type for the target platform).

ssize t (*aio read)(struct kiocb *, char _ user *, size t, loff t);
Initiates an asynchronous read—a read operation that might not complete
before the function returns. If this method is NULL, all operations will be pro-
cessed (synchronously) by read instead.

ssize t (*write) (struct file *, const char _ user *, size t, loff t *);
Sends data to the device. If NULL, -EINVAL is returned to the program calling the
write system call. The return value, if nonnegative, represents the number of
bytes successfully written.

ssize t (*aio write)(struct kiocb *, const char _ user *, size t, loff t *);
Initiates an asynchronous write operation on the device.

int (*readdir) (struct file *, void *, filldir t);
This field should be NULL for device files; it is used for reading directories and is
useful only for filesystems.
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unsigned int (*poll) (struct file *, struct poll table struct *);

int

int

int

int

int

int

The poll method is the back end of three system calls: poll, epoll, and select, all of
which are used to query whether a read or write to one or more file descriptors
would block. The poll method should return a bit mask indicating whether non-
blocking reads or writes are possible, and, possibly, provide the kernel with
information that can be used to put the calling process to sleep until I/O
becomes possible. If a driver leaves its poll method NULL, the device is assumed to
be both readable and writable without blocking.

(*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

The ioctl system call offers a way to issue device-specific commands (such as for-
matting a track of a floppy disk, which is neither reading nor writing). Addition-
ally, a few ioctl commands are recognized by the kernel without referring to the
fops table. If the device doesn’t provide an ioctl method, the system call returns
an error for any request that isn’t predefined (-ENOTTY, “No such ioctl for
device”).

(*mmap) (struct file *, struct vm area struct *);
mmap is used to request a mapping of device memory to a process’s address
space. If this method is NULL, the mmap system call returns -ENODEV.

(*open) (struct inode *, struct file *);

Though this is always the first operation performed on the device file, the driver
is not required to declare a corresponding method. If this entry is NULL, opening
the device always succeeds, but your driver isn’t notified.

(*flush) (struct file *);

The flush operation is invoked when a process closes its copy of a file descriptor
for a device; it should execute (and wait for) any outstanding operations on the
device. This must not be confused with the fsync operation requested by user
programs. Currently, flush is used in very few drivers; the SCSI tape driver uses
it, for example, to ensure that all data written makes it to the tape before the
device is closed. If flush is NULL, the kernel simply ignores the user application
request.

(*release) (struct inode *, struct file *);
This operation is invoked when the file structure is being released. Like open,
release can be NULL.”

(*fsync) (struct file *, struct dentry *, int);
This method is the back end of the fsync system call, which a user calls to flush
any pending data. If this pointer is NULL, the system call returns -EINVAL.

* Note that release isn’t invoked every time a process calls close. Whenever a file structure is shared (for exam-
ple, after a fork or a dup), release won’t be invoked until all copies are closed. If you need to flush pending
data when any copy is closed, you should implement the flush method.
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int (*aio_fsync)(struct kiocb *, int);
This is the asynchronous version of the fsync method.

int (*fasync) (int, struct file *, int);
This operation is used to notify the device of a change in its FASYNC flag. Asyn-
chronous notification is an advanced topic and is described in Chapter 6. The
field can be NULL if the driver doesn’t support asynchronous notification.

int (*lock) (struct file *, int, struct file lock *);
The lock method is used to implement file locking; locking is an indispensable
feature for regular files but is almost never implemented by device drivers.

ssize t (*readv) (struct file *, const struct iovec *, unsigned long, loff t*);

ssize t (*writev) (struct file *, const struct iovec *, unsigned long, loff t *);
These methods implement scatter/gather read and write operations. Applica-
tions occasionally need to do a single read or write operation involving multiple
memory areas; these system calls allow them to do so without forcing extra copy
operations on the data. If these function pointers are left NULL, the read and write
methods are called (perhaps more than once) instead.

ssize t (*sendfile)(struct file *, loff t *, size t, read actor_ t, void *);
This method implements the read side of the sendfile system call, which moves
the data from one file descriptor to another with a minimum of copying. It is
used, for example, by a web server that needs to send the contents of a file out a
network connection. Device drivers usually leave sendfile NULL.

ssize t (*sendpage) (struct file *, struct page *, int, size t, loff t *,

int);

sendpage is the other half of sendfile; it is called by the kernel to send data, one
page at a time, to the corresponding file. Device drivers do not usually imple-
ment sendpage.

unsigned long (*get unmapped area)(struct file *, unsigned long, unsigned
long, unsigned long, unsigned long);

The purpose of this method is to find a suitable location in the process’s address
space to map in a memory segment on the underlying device. This task is nor-
mally performed by the memory management code; this method exists to allow
drivers to enforce any alignment requirements a particular device may have.
Most drivers can leave this method NULL.

int (*check flags)(int)
This method allows a module to check the flags passed to an fentl(F_SETFL...)
call.

int (*dir notify)(struct file *, unsigned long);
This method is invoked when an application uses fcntl to request directory
change notifications. It is useful only to filesystems; drivers need not implement
dir_notify.
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The scull device driver implements only the most important device methods. Its
file operations structure is initialized as follows:

struct file operations scull fops = {

.owner = THIS MODULE,
.1lseek =  scull llseek,
.read = scull read,
write = scull write,
.ioctl = scull_ioctl,
.open = scull open,

.release = scull release,
1
This declaration uses the standard C tagged structure initialization syntax. This syn-
tax is preferred because it makes drivers more portable across changes in the defini-
tions of the structures and, arguably, makes the code more compact and readable.
Tagged initialization allows the reordering of structure members; in some cases, sub-
stantial performance improvements have been realized by placing pointers to fre-
quently accessed members in the same hardware cache line.

The file Structure

struct file, defined in <linux/fs.h>, is the second most important data structure
used in device drivers. Note that a file has nothing to do with the FILE pointers of
user-space programs. A FILE is defined in the C library and never appears in kernel
code. A struct file, on the other hand, is a kernel structure that never appears in
user programs.

The file structure represents an open file. (It is not specific to device drivers; every
open file in the system has an associated struct file in kernel space.) It is created by
the kernel on open and is passed to any function that operates on the file, until
the last close. After all instances of the file are closed, the kernel releases the data
structure.

In the kernel sources, a pointer to struct file is usually called either file or filp
(“file pointer”). We'll consistently call the pointer filp to prevent ambiguities with
the structure itself. Thus, file refers to the structure and filp to a pointer to the
structure.

The most important fields of struct file are shown here. As in the previous section,
the list can be skipped on a first reading. However, later in this chapter, when we
face some real C code, we’ll discuss the fields in more detail.

mode t f mode;
The file mode identifies the file as either readable or writable (or both), by means
of the bits FMODE_READ and FMODE_WRITE. You might want to check this field for
read/write permission in your open or ioct! function, but you don’t need to check
permissions for read and write, because the kernel checks before invoking your
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method. An attempt to read or write when the file has not been opened for that
type of access is rejected without the driver even knowing about it.

loff t f pos;

The current reading or writing position. loff t is a 64-bit value on all platforms
(long long in gcc terminology). The driver can read this value if it needs to know
the current position in the file but should not normally change it; read and write
should update a position using the pointer they receive as the last argument
instead of acting on filp->f pos directly. The one exception to this rule is in the
liseek method, the purpose of which is to change the file position.

unsigned int f flags;

These are the file flags, such as 0_RDONLY, 0_NONBLOCK, and 0_SYNC. A driver should
check the 0_NONBLOCK flag to see if nonblocking operation has been requested (we
discuss nonblocking I/O in the section “Blocking and Nonblocking Operations”
in Chapter 1); the other flags are seldom used. In particular, read/write permis-
sion should be checked using f mode rather than f flags. All the flags are
defined in the header <linux/fcntl.h>.

struct file operations *f op;

The operations associated with the file. The kernel assigns the pointer as part of
its implementation of open and then reads it when it needs to dispatch any oper-
ations. The value in filp->f op is never saved by the kernel for later reference;
this means that you can change the file operations associated with your file, and
the new methods will be effective after you return to the caller. For example, the
code for open associated with major number 1 (/dev/null, /dev/zero, and so on)
substitutes the operations in filp->f op depending on the minor number being
opened. This practice allows the implementation of several behaviors under the
same major number without introducing overhead at each system call. The abil-
ity to replace the file operations is the kernel equivalent of “method overriding”
in object-oriented programming.

void *private data;

The open system call sets this pointer to NULL before calling the open method for
the driver. You are free to make its own use of the field or to ignore it; you can
use the field to point to allocated data, but then you must remember to free that
memory in the release method before the file structure is destroyed by the ker-
nel. private_data is a useful resource for preserving state information across sys-
tem calls and is used by most of our sample modules.

struct dentry *f dentry;

The directory entry (dentry) structure associated with the file. Device driver writ-
ers normally need not concern themselves with dentry structures, other than to
access the inode structure as filp->f dentry->d_inode.
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The real structure has a few more fields, but they aren’t useful to device drivers. We
can safely ignore those fields, because drivers never create file structures; they only
access structures created elsewhere.

The inode Structure

The inode structure is used by the kernel internally to represent files. Therefore, it is
different from the file structure that represents an open file descriptor. There can be
numerous file structures representing multiple open descriptors on a single file, but
they all point to a single inode structure.

The inode structure contains a great deal of information about the file. As a general
rule, only two fields of this structure are of interest for writing driver code:

dev_t i rdev;
For inodes that represent device files, this field contains the actual device number.
struct cdev *i cdev;
struct cdev is the kernel’s internal structure that represents char devices; this
field contains a pointer to that structure when the inode refers to a char device

file.

The type of i_rdev changed over the course of the 2.5 development series, breaking a
lot of drivers. As a way of encouraging more portable programming, the kernel devel-
opers have added two macros that can be used to obtain the major and minor num-
ber from an inode:

unsigned int iminor(struct inode *inode);

unsigned int imajor(struct inode *inode);
In the interest of not being caught by the next change, these macros should be used
instead of manipulating i_rdev directly.

Char Device Registration

As we mentioned, the kernel uses structures of type struct cdev to represent char
devices internally. Before the kernel invokes your device’s operations, you must allo-
cate and register one or more of these structures.” To do so, your code should include
<linux/cdev.h>, where the structure and its associated helper functions are defined.

There are two ways of allocating and initializing one of these structures. If you wish
to obtain a standalone cdev structure at runtime, you may do so with code such as:

struct cdev *my cdev = cdev_alloc();
my cdev->ops = &my fops;

* There is an older mechanism that avoids the use of cdev structures (which we discuss in the section “The
Older Way”). New code should use the newer technique, however.
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Chances are, however, that you will want to embed the cdev structure within a
device-specific structure of your own; that is what scull does. In that case, you should
initialize the structure that you have already allocated with:

void cdev_init(struct cdev *cdev, struct file operations *fops);

Either way, there is one other struct cdev field that you need to initialize. Like the
file operations structure, struct cdev has an owner field that should be set to
THIS_MODULE.

Once the cdev structure is set up, the final step is to tell the kernel about it with a call to:
int cdev_add(struct cdev *dev, dev_t num, unsigned int count);

Here, dev is the cdev structure, num is the first device number to which this device
responds, and count is the number of device numbers that should be associated with
the device. Often count is one, but there are situations where it makes sense to have
more than one device number correspond to a specific device. Consider, for exam-
ple, the SCSI tape driver, which allows user space to select operating modes (such as
density) by assigning multiple minor numbers to each physical device.

There are a couple of important things to keep in mind when using cdev_add. The
first is that this call can fail. If it returns a negative error code, your device has not
been added to the system. It almost always succeeds, however, and that brings up
the other point: as soon as cdev_add returns, your device is “live” and its operations
can be called by the kernel. You should not call cdev_add until your driver is com-
pletely ready to handle operations on the device.

To remove a char device from the system, call:
void cdev_del(struct cdev *dev);

Clearly, you should not access the cdev structure after passing it to cdev_del.

Device Registration in scull

Internally, scull represents each device with a structure of type struct scull dev. This
structure is defined as:

struct scull_dev {
struct scull gset *data; /* Pointer to first quantum set */

int quantum; /* the current quantum size */

int gset; /* the current array size */
unsigned long size; /* amount of data stored here */
unsigned int access key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */

I
We discuss the various fields in this structure as we come to them, but for now, we
call attention to cdev, the struct cdev that interfaces our device to the kernel. This
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structure must be initialized and added to the system as described above; the scull
code that handles this task is:

static void scull setup cdev(struct scull dev *dev, int index)

{

int err, devno = MKDEV(scull major, scull minor + index);

cdev_init(&dev->cdev, &scull fops);

dev->cdev.owner = THIS_MODULE;

dev->cdev.ops = &scull fops;

err = cdev_add (&dev->cdev, devno, 1);

/* Fail gracefully if need be */

if (err)

printk (KERN_NOTICE "Error %d adding scull%d", err, index);
}

Since the cdev structure is embedded within struct scull dev, cdev_init must be
called to perform the initialization of that structure.

The Older Way

If you dig through much driver code in the 2.6 kernel, you may notice that quite a
few char drivers do not use the cdev interface that we have just described. What you
are seeing is older code that has not yet been upgraded to the 2.6 interface. Since that
code works as it is, this upgrade may not happen for a long time. For completeness,
we describe the older char device registration interface, but new code should not use
it; this mechanism will likely go away in a future kernel.

The classic way to register a char device driver is with:

int register chrdev(unsigned int major, const char *name,
struct file operations *fops);
Here, major is the major number of interest, name is the name of the driver (it
appears in /proc/devices), and fops is the default file operations structure. A call to
register_chrdev registers minor numbers 0-255 for the given major, and sets up a
default cdev structure for each. Drivers using this interface must be prepared to han-
dle open calls on all 256 minor numbers (whether they correspond to real devices or
not), and they cannot use major or minor numbers greater than 255.

If you use register_chrdev, the proper function to remove your device(s) from the sys-
tem is:

int unregister chrdev(unsigned int major, const char *name);

major and name must be the same as those passed to register_chrdev, or the call will

fail.
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open and release

Now that we’ve taken a quick look at the fields, we start using them in real scull
functions.

The open Method

The open method is provided for a driver to do any initialization in preparation for
later operations. In most drivers, open should perform the following tasks:

* Check for device-specific errors (such as device-not-ready or similar hardware
problems)

* Initialize the device if it is being opened for the first time
* Update the f_op pointer, if necessary

* Allocate and fill any data structure to be put in filp->private data

The first order of business, however, is usually to identify which device is being
opened. Remember that the prototype for the open method is:

int (*open)(struct inode *inode, struct file *filp);

The inode argument has the information we need in the form of its i_cdev field,
which contains the cdev structure we set up before. The only problem is that we do
not normally want the cdev structure itself, we want the scull_dev structure that con-
tains that cdev structure. The C language lets programmers play all sorts of tricks to
make that kind of conversion; programming such tricks is error prone, however, and
leads to code that is difficult for others to read and understand. Fortunately, in this
case, the kernel hackers have done the tricky stuff for us, in the form of the
container_of macro, defined in <linux/kernel.h>:

container_of(pointer, container type, container_field);

This macro takes a pointer to a field of type container field, within a structure of
type container_type, and returns a pointer to the containing structure. In scull_open,
this macro is used to find the appropriate device structure:

struct scull dev *dev; /* device information */

dev = container_of(inode->i_cdev, struct scull dev, cdev);

filp->private data = dev; /* for other methods */
Once it has found the scull _dev structure, scull stores a pointer to it in the private_data
field of the file structure for easier access in the future.

The other way to identify the device being opened is to look at the minor number
stored in the inode structure. If you register your device with register_chrdev, you
must use this technique. Be sure to use iminor to obtain the minor number from the
inode structure, and make sure that it corresponds to a device that your driver is
actually prepared to handle.
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The (slightly simplified) code for scull_open is:

int scull open(struct inode *inode, struct file *filp)
struct scull dev *dev; /* device information */

dev = container of(inode->i cdev, struct scull dev, cdev);
filp->private_data = dev; /* for other methods */

/* now trim to 0 the length of the device if open was write-only */
if ( (filp->f flags & O ACCMODE) == O_WRONLY) {
scull trim(dev); /* ignore errors */

}

return 0; /* success */
}
The code looks pretty sparse, because it doesn’t do any particular device handling
when open is called. It doesn’t need to, because the scull device is global and persis-
tent by design. Specifically, there’s no action such as “initializing the device on first
open,” because we don’t keep an open count for sculls.

The only real operation performed on the device is truncating it to a length of 0 when
the device is opened for writing. This is performed because, by design, overwriting a
scull device with a shorter file results in a shorter device data area. This is similar to
the way opening a regular file for writing truncates it to zero length. The operation
does nothing if the device is opened for reading.

We’'ll see later how a real initialization works when we look at the code for the other
scull personalities.

The release Method

The role of the release method is the reverse of open. Sometimes you’ll find that the
method implementation is called device close instead of device release. Either
way, the device method should perform the following tasks:

* Deallocate anything that open allocated in filp->private data
* Shut down the device on last close

The basic form of scull has no hardware to shut down, so the code required is
minimal:”

int scull release(struct inode *inode, struct file *filp)

{
}

return 0;

* The other flavors of the device are closed by different functions because scull_open substituted a different
filp->f_op for each device. We'll discuss these as we introduce each flavor.
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You may be wondering what happens when a device file is closed more times than it
is opened. After all, the dup and fork system calls create copies of open files without
calling open; each of those copies is then closed at program termination. For exam-
ple, most programs don’t open their stdin file (or device), but all of them end up clos-
ing it. How does a driver know when an open device file has really been closed?

The answer is simple: not every close system call causes the release method to be
invoked. Only the calls that actually release the device data structure invoke the
method—hence its name. The kernel keeps a counter of how many times a file
structure is being used. Neither fork nor dup creates a new file structure (only open
does that); they just increment the counter in the existing structure. The close sys-
tem call executes the release method only when the counter for the file structure
drops to 0, which happens when the structure is destroyed. This relationship
between the release method and the close system call guarantees that your driver sees
only one release call for each open.

Note that the flush method is called every time an application calls close. However,
very few drivers implement flush, because usually there’s nothing to perform at close
time unless release is involved.

As you may imagine, the previous discussion applies even when the application ter-
minates without explicitly closing its open files: the kernel automatically closes any
file at process exit time by internally using the close system call.

scull's Memory Usage

Before introducing the read and write operations, we’d better look at how and why
scull performs memory allocation. “How” is needed to thoroughly understand the
code, and “why” demonstrates the kind of choices a driver writer needs to make,
although scull is definitely not typical as a device.

This section deals only with the memory allocation policy in scull and doesn’t show
the hardware management skills you need to write real drivers. These skills are intro-
duced in Chapters 9 and 10. Therefore, you can skip this section if you’re not inter-
ested in understanding the inner workings of the memory-oriented scull driver.

The region of memory used by scull, also called a device, is variable in length. The
more you write, the more it grows; trimming is performed by overwriting the device
with a shorter file.

The scull driver introduces two core functions used to manage memory in the Linux
kernel. These functions, defined in <linux/slab.h>, are:

void *kmalloc(size t size, int flags);
void kfree(void *ptr);

A call to kmalloc attempts to allocate size bytes of memory; the return value is a
pointer to that memory or NULL if the allocation fails. The flags argument is used to
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describe how the memory should be allocated; we examine those flags in detail in
Chapter 8. For now, we always use GFP_KERNEL. Allocated memory should be freed
with kfree. You should never pass anything to kfree that was not obtained from
kmalloc. Tt is, however, legal to pass a NULL pointer to kfree.

kmalloc is not the most efficient way to allocate large areas of memory (see
Chapter 8), so the implementation chosen for scull is not a particularly smart one.
The source code for a smart implementation would be more difficult to read, and the
aim of this section is to show read and write, not memory management. That’s why
the code just uses kmalloc and kfree without resorting to allocation of whole pages,
although that approach would be more efficient.

On the flip side, we didn’t want to limit the size of the “device” area, for both a
philosophical reason and a practical one. Philosophically, it’s always a bad idea to
put arbitrary limits on data items being managed. Practically, scull can be used to
temporarily eat up your system’s memory in order to run tests under low-memory
conditions. Running such tests might help you understand the system’s internals.
You can use the command cp /dev/zero /dev/scull0 to eat all the real RAM with scull,
and you can use the dd utility to choose how much data is copied to the scull device.

In scull, each device is a linked list of pointers, each of which points to a scull dev
structure. Each such structure can refer, by default, to at most four million bytes,
through an array of intermediate pointers. The released source uses an array of 1000
pointers to areas of 4000 bytes. We call each memory area a quantum and the array
(or its length) a quantum set. A scull device and its memory areas are shown in

Figure 3-1.
Scull_device
Scull_gset ’_' Scull_gset j
J Next Next 1 ,
Data | Data (end of list)

L, _,—> Quantum L _,—» Quantum
T Quantum T Quantum
Quantum o Quantum

Quantum Quantum

Figure 3-1. The layout of a scull device
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The chosen numbers are such that writing a single byte in scull consumes 8000 or
12,000 thousand bytes of memory: 4000 for the quantum and 4000 or 8000 for the
quantum set (according to whether a pointer is represented in 32 bits or 64 bits on
the target platform). If, instead, you write a huge amount of data, the overhead of the
linked list is not too bad. There is only one list element for every four megabytes of
data, and the maximum size of the device is limited by the computer’s memory size.

Choosing the appropriate values for the quantum and the quantum set is a question
of policy, rather than mechanism, and the optimal sizes depend on how the device is
used. Thus, the scull driver should not force the use of any particular values for the
quantum and quantum set sizes. In scull, the user can change the values in charge in
several ways: by changing the macros SCULL_QUANTUM and SCULL_QSET in scull.h at
compile time, by setting the integer values scull_quantum and scull_gset at module
load time, or by changing both the current and default values using ioctl at runtime.

Using a macro and an integer value to allow both compile-time and load-time config-
uration is reminiscent of how the major number is selected. We use this technique
for whatever value in the driver is arbitrary or related to policy.

The only question left is how the default numbers have been chosen. In this particu-
lar case, the problem is finding the best balance between the waste of memory result-
ing from half-filled quanta and quantum sets and the overhead of allocation,
deallocation, and pointer chaining that occurs if quanta and sets are small. Addition-
ally, the internal design of kmalloc should be taken into account. (We won’t pursue
the point now, though; the innards of kmalloc are explored in Chapter 8.) The choice
of default numbers comes from the assumption that massive amounts of data are
likely to be written to scull while testing it, although normal use of the device will
most likely transfer just a few kilobytes of data.

We have already seen the scull dev structure that represents our device internally.
That structure’s quantum and gset fields hold the device’s quantum and quantum set
sizes, respectively. The actual data, however, is tracked by a different structure,
which we call struct scull gset:
struct scull gset {
void **data;
struct scull gset *next;
1
The next code fragment shows in practice how struct scull dev and struct scull gset
are used to hold data. The function scull_trim is in charge of freeing the whole data
area and is invoked by scull_open when the file is opened for writing. It simply walks
through the list and frees any quantum and quantum set it finds.

int scull trim(struct scull dev *dev)

{
struct scull gset *next, *dptr;
int gset = dev->gset; /* "dev" is not-null */
int i;
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for (dptr = dev->data; dptr; dptr = next) { /* all the list items */
if (dptr->data) {
for (i = 0; i < gset; i++)
kfree(dptr->data[i]);
kfree(dptr->data);
dptr->data = NULL;

}
next = dptr->next;
kfree(dptr);

dev->size = 0;

dev->quantum = scull_quantum;
dev->qset = scull gset;
dev->data = NULL;

return 0;

}
scull_trim is also used in the module cleanup function to return memory used by
scull to the system.

read and write

The read and write methods both perform a similar task, that is, copying data from
and to application code. Therefore, their prototypes are pretty similar, and it’s worth
introducing them at the same time:
ssize t read(struct file *filp, char _ user *buff,
size_t count, loff_t *offp);
ssize t write(struct file *filp, const char __ user *buff,
size t count, loff t *offp);
For both methods, filp is the file pointer and count is the size of the requested data
transfer. The buff argument points to the user buffer holding the data to be written or
the empty buffer where the newly read data should be placed. Finally, offp is a pointer
to a “long offset type” object that indicates the file position the user is accessing. The
return value is a “signed size type”; its use is discussed later.

Let us repeat that the buff argument to the read and write methods is a user-space
pointer. Therefore, it cannot be directly dereferenced by kernel code. There are a few
reasons for this restriction:

* Depending on which architecture your driver is running on, and how the kernel
was configured, the user-space pointer may not be valid while running in kernel
mode at all. There may be no mapping for that address, or it could point to some
other, random data.

* Even if the pointer does mean the same thing in kernel space, user-space mem-
ory is paged, and the memory in question might not be resident in RAM when
the system call is made. Attempting to reference the user-space memory directly
could generate a page fault, which is something that kernel code is not allowed
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to do. The result would be an “oops,” which would result in the death of the
process that made the system call.

* The pointer in question has been supplied by a user program, which could be
buggy or malicious. If your driver ever blindly dereferences a user-supplied
pointer, it provides an open doorway allowing a user-space program to access or
overwrite memory anywhere in the system. If you do not wish to be responsible
for compromising the security of your users’ systems, you cannot ever derefer-
ence a user-space pointer directly.

Obviously, your driver must be able to access the user-space buffer in order to get its
job done. This access must always be performed by special, kernel-supplied func-
tions, however, in order to be safe. We introduce some of those functions (which are
defined in <asm/uaccess.h>) here, and the rest in the section “Using the ioctl Argu-
ment” in Chapter 1; they use some special, architecture-dependent magic to ensure
that data transfers between kernel and user space happen in a safe and correct way.

The code for read and write in scull needs to copy a whole segment of data to or from
the user address space. This capability is offered by the following kernel functions,
which copy an arbitrary array of bytes and sit at the heart of most read and write
implementations:
unsigned long copy to user(void __user *to,
const void *from,
unsigned long count);
unsigned long copy from user(void *to,
const void __user *from,
unsigned long count);
Although these functions behave like normal memcpy functions, a little extra care
must be used when accessing user space from kernel code. The user pages being
addressed might not be currently present in memory, and the virtual memory sub-
system can put the process to sleep while the page is being transferred into place.
This happens, for example, when the page must be retrieved from swap space. The
net result for the driver writer is that any function that accesses user space must be
reentrant, must be able to execute concurrently with other driver functions, and, in
particular, must be in a position where it can legally sleep. We return to this subject
in Chapter 5.

The role of the two functions is not limited to copying data to and from user-space:
they also check whether the user space pointer is valid. If the pointer is invalid, no copy
is performed,; if an invalid address is encountered during the copy, on the other hand,
only part of the data is copied. In both cases, the return value is the amount of mem-
ory still to be copied. The scull code looks for this error return, and returns -EFAULT to
the user if it’s not 0.

The topic of user-space access and invalid user space pointers is somewhat advanced
and is discussed in Chapter 6. However, it’s worth noting that if you don’t need to
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check the user-space pointer you can invoke __copy_to_user and __copy_from_user
instead. This is useful, for example, if you know you already checked the argument.
Be careful, howevers; if, in fact, you do not check a user-space pointer that you pass to
these functions, then you can create kernel crashes and/or security holes.

As far as the actual device methods are concerned, the task of the read method is to
copy data from the device to user space (using copy_to_user), while the write method
must copy data from user space to the device (using copy_from_user). Each read or
write system call requests transfer of a specific number of bytes, but the driver is free
to transfer less data—the exact rules are slightly different for reading and writing and
are described later in this chapter.

Whatever the amount of data the methods transfer, they should generally update the
file position at *offp to represent the current file position after successful comple-
tion of the system call. The kernel then propagates the file position change back into
the file structure when appropriate. The pread and pwrite system calls have differ-
ent semantics, however; they operate from a given file offset and do not change the
file position as seen by any other system calls. These calls pass in a pointer to the
user-supplied position, and discard the changes that your driver makes.

Figure 3-2 represents how a typical read implementation uses its arguments.

ssize_t dev_read(struct file *file, char *buf, size_t count, loff_t *ppos);

struct file

Buffer Buffer
f_count (in the driver) (inthe
f_flags application
f_mode orlibc)

f_pos copy_to_user()

Kernel Space User Space
(nonswappable) (swappable)

Figure 3-2. The arguments to read

Both the read and write methods return a negative value if an error occurs. A return
value greater than or equal to 0, instead, tells the calling program how many bytes
have been successfully transferred. If some data is transferred correctly and then an
error happens, the return value must be the count of bytes successfully transferred,
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and the error does not get reported until the next time the function is called. Imple-
menting this convention requires, of course, that your driver remember that the error
has occurred so that it can return the error status in the future.

Although kernel functions return a negative number to signal an error, and the value
of the number indicates the kind of error that occurred (as introduced in Chapter 2),
programs that run in user space always see -1 as the error return value. They need to
access the errno variable to find out what happened. The user-space behavior is dic-
tated by the POSIX standard, but that standard does not make requirements on how
the kernel operates internally.

The read Method

The return value for read is interpreted by the calling application program:

* If the value equals the count argument passed to the read system call, the
requested number of bytes has been transferred. This is the optimal case.

* If the value is positive, but smaller than count, only part of the data has been
transferred. This may happen for a number of reasons, depending on the device.
Most often, the application program retries the read. For instance, if you read
using the fread function, the library function reissues the system call until com-
pletion of the requested data transfer.

¢ If the value is 0, end-of-file was reached (and no data was read).

* A negative value means there was an error. The value specifies what the error
was, according to <linux/errno.h>. Typical values returned on error include -EINTR
(interrupted system call) or -EFAULT (bad address).

What is missing from the preceding list is the case of “there is no data, but it may
arrive later.” In this case, the read system call should block. We’ll deal with blocking
input in Chapter 6.

The scull code takes advantage of these rules. In particular, it takes advantage of the
partial-read rule. Each invocation of scull_read deals only with a single data quan-
tum, without implementing a loop to gather all the data; this makes the code shorter
and easier to read. If the reading program really wants more data, it reiterates the
call. If the standard 1/O library (i.e., fread) is used to read the device, the application
won’t even notice the quantization of the data transfer.

If the current read position is greater than the device size, the read method of scull
returns 0 to signal that there’s no data available (in other words, we’re at end-of-file).
This situation can happen if process A is reading the device while process B opens it
for writing, thus truncating the device to a length of 0. Process A suddenly finds itself
past end-of-file, and the next read call returns 0.
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Here is the code for read (ignore the calls to down_interruptible and up for now; we
will get to them in the next chapter):

ssize t scull read(struct file *filp, char _ user *buf, size t count,
loff_t *f_pos)
{
struct scull dev *dev = filp->private_data;
struct scull gset *dptr; /* the first listitem */
int quantum = dev->quantum, gset = dev->gset;
int itemsize = quantum * gset; /* how many bytes in the listitem */
int item, s _pos, q_pos, rest;
ssize t retval = 0;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

if (*f_pos >= dev-»>size)
goto out;

if (*f_pos + count > dev->size)
count = dev->size - *f_pos;

/* find listitem, gset index, and offset in the quantum */
item = (long)*f pos / itemsize;

rest = (long)*f pos % itemsize;

s _pos = rest / quantum; qg_pos = rest % quantum;

/* follow the 1list up to the right position (defined elsewhere) */
dptr = scull follow(dev, item);

if (dptr == NULL || !dptr->data || ! dptr->data[s_pos])
goto out; /* don't fill holes */

/* read only up to the end of this quantum */
if (count > quantum - g_pos)
count = quantum - g_pos;

if (copy to user(buf, dptr->data[s pos] + g_pos, count)) {
retval = -EFAULT;
goto out;

}

*f pos += count;

retval = count;

out:
up(8&dev->sem);
return retval;
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The write Method

write, like read, can transfer less data than was requested, according to the following
rules for the return value:

* If the value equals count, the requested number of bytes has been transferred.

* If the value is positive, but smaller than count, only part of the data has been
transferred. The program will most likely retry writing the rest of the data.

* If the value is 0, nothing was written. This result is not an error, and there is no
reason to return an error code. Once again, the standard library retries the call to
write. We'll examine the exact meaning of this case in Chapter 6, where block-
ing write is introduced.

* A negative value means an error occurred; as for read, valid error values are
those defined in <linux/errno.h>.

Unfortunately, there may still be misbehaving programs that issue an error message
and abort when a partial transfer is performed. This happens because some program-
mers are accustomed to seeing write calls that either fail or succeed completely,
which is actually what happens most of the time and should be supported by devices
as well. This limitation in the scull implementation could be fixed, but we didn’t
want to complicate the code more than necessary.

The scull code for write deals with a single quantum at a time, as the read method
does:

ssize t scull write(struct file *filp, const char _ user *buf, size t count,
loff_t *f_pos)
{
struct scull dev *dev = filp->private data;
struct scull gset *dptr;
int quantum = dev->quantum, gset = dev->gset;
int itemsize = quantum * gset;
int item, s _pos, q_pos, rest;
ssize_t retval = -ENOMEM; /* value used in "goto out" statements */

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

/* find listitem, gset index and offset in the quantum */
item = (long)*f_pos / itemsize;

rest = (long)*f pos % itemsize;

s _pos = rest / quantum; qg_pos = rest % quantum;

/* follow the list up to the right position */

dptr = scull follow(dev, item);

if (dptr == NULL)
goto out;

if (!dptr->data) {
dptr->data = kmalloc(gset * sizeof(char *), GFP_KERNEL);
if (!dptr->data)
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goto out;
memset(dptr->data, 0, gset * sizeof(char *));

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos])
goto out;

}
/* write only up to the end of this quantum */
if (count > quantum - g_pos)

count = quantum - q_pos;

if (copy from user(dptr->data[s_pos]+q_pos, buf, count)) {
retval = -EFAULT;
goto out;

}
*f pos += count;
retval = count;

/* update the size */
if (dev->size < *f pos)
dev->size = *f_pos;

out:
up(&dev->sem);
return retval;

readv and writev

Unix systems have long supported two system calls named readv and writev. These
“vector” versions of read and write take an array of structures, each of which con-
tains a pointer to a buffer and a length value. A readv call would then be expected to
read the indicated amount into each buffer in turn. writev, instead, would gather
together the contents of each buffer and put them out as a single write operation.

If your driver does not supply methods to handle the vector operations, readv and
writev are implemented with multiple calls to your read and write methods. In many
situations, however, greater efficiency is acheived by implementing readv and writev
directly.

The prototypes for the vector operations are:

ssize t (*readv) (struct file *filp, const struct iovec *iov,
unsigned long count, loff t *ppos);

ssize t (*writev) (struct file *filp, const struct iovec *iov,
unsigned long count, loff t *ppos);

Here, the filp and ppos arguments are the same as for read and write. The iovec
structure, defined in <linux/uio.h>, looks like:

struct iovec

{
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void _ user *iov base;
__kernel size t iov len;
b
Each iovec describes one chunk of data to be transferred; it starts at iov_base (in user
space) and is iov_len bytes long. The count parameter tells the method how many
iovec structures there are. These structures are created by the application, but the
kernel copies them into kernel space before calling the driver.

The simplest implementation of the vectored operations would be a straightforward
loop that just passes the address and length out of each iovec to the driver’s read or
write function. Often, however, efficient and correct behavior requires that the driver
do something smarter. For example, a writev on a tape drive should write the con-
tents of all the iovec structures as a single record on the tape.

Many drivers, however, gain no benefit from implementing these methods them-
selves. Therefore, scull omits them. The kernel emulates them with read and write,
and the end result is the same.

Playing with the New Devices

Once you are equipped with the four methods just described, the driver can be com-
piled and tested; it retains any data you write to it until you overwrite it with new
data. The device acts like a data buffer whose length is limited only by the amount of
real RAM available. You can try using cp, dd, and input/output redirection to test out
the driver.

The free command can be used to see how the amount of free memory shrinks and
expands according to how much data is written into scull.

To get more confident with reading and writing one quantum at a time, you can add
a printk at an appropriate point in the driver and watch what happens while an appli-
cation reads or writes large chunks of data. Alternatively, use the strace utility to
monitor the system calls issued by a program, together with their return values. Trac-
ing a ¢p or an Is -l > /dev/scull0 shows quantized reads and writes. Monitoring (and
debugging) techniques are presented in detail in Chapter 4

Quick Reference

This chapter introduced the following symbols and header files. The list of the fields
in struct file operations and struct file is not repeated here.
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#include <linux/types.h>
dev_t
dev_t is the type used to represent device numbers within the kernel.

int MAJOR(dev_t dev);
int MINOR(dev_t dev);
Macros that extract the major and minor numbers from a device number.

dev_t MKDEV(unsigned int major, unsigned int minor);
Macro that builds a dev_t data item from the major and minor numbers.

#include <linux/fs.h>
The “filesystem” header is the header required for writing device drivers. Many
important functions and data structures are declared in here.

int register chrdev_region(dev_t first, unsigned int count, char *name)
int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, unsigned int
count, char *name)
void unregister chrdev_region(dev t first, unsigned int count);
Functions that allow a driver to allocate and free ranges of device numbers.
register_chrdev_region should be used when the desired major number is known
in advance; for dynamic allocation, use alloc_chrdev_region instead.

int register chrdev(unsigned int major, const char *name, struct file operations
*fops);
The old (pre-2.6) char device registration routine. It is emulated in the 2.6 ker-
nel but should not be used for new code. If the major number is not 0, it is used
unchanged; otherwise a dynamic number is assigned for this device.

int unregister chrdev(unsigned int major, const char *name);
Function that undoes a registration made with register_chrdev. Both major and
the name string must contain the same values that were used to register the
driver.

struct file operations;

struct file;

struct inode;
Three important data structures used by most device drivers. The file operations
structure holds a char driver’s methods; struct file represents an open file, and
struct inode represents a file on disk.

#include <linux/cdev.h>

struct cdev *cdev_alloc(void);

void cdev_init(struct cdev *dev, struct file operations *fops);

int cdev_add(struct cdev *dev, dev_t num, unsigned int count);

void cdev_del(struct cdev *dev);
Functions for the management of cdev structures, which represent char devices
within the kernel.
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#include <linux/kernel.h>

container of(pointer, type, field);
A convenience macro that may be used to obtain a pointer to a structure from a
pointer to some other structure contained within it.

#include <asm/uaccess.h>

This include file declares functions used by kernel code to move data to and
from user space.

unsigned long copy from user (void *to, const void *from, unsigned long
count);

unsigned long copy to user (void *to, const void *from, unsigned long count);
Copy data between user space and kernel space.
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CHAPTER 4

Debugging Techniques

Kernel programming brings its own, unique debugging challenges. Kernel code can-
not be easily executed under a debugger, nor can it be easily traced, because it is a set
of functionalities not related to a specific process. Kernel code errors can also be
exceedingly hard to reproduce and can bring down the entire system with them, thus
destroying much of the evidence that could be used to track them down.

This chapter introduces techniques you can use to monitor kernel code and trace
errors under such trying circumstances.

Debugging Supportin the Kernel

In Chapter 2, we recommended that you build and install your own kernel, rather
than running the stock kernel that comes with your distribution. One of the stron-
gest reasons for running your own kernel is that the kernel developers have built sev-
eral debugging features into the kernel itself. These features can create extra output
and slow performance, so they tend not to be enabled in production kernels from
distributors. As a kernel developer, however, you have different priorities and will
gladly accept the (minimal) overhead of the extra kernel debugging support.

Here, we list the configuration options that should be enabled for kernels used for
development. Except where specified otherwise, all of these options are found under
the “kernel hacking” menu in whatever kernel configuration tool you prefer. Note
that some of these options are not supported by all architectures.

CONFIG_DEBUG_KERNEL
This option just makes other debugging options available; it should be turned on
but does not, by itself, enable any features.

CONFIG DEBUG_SLAB
This crucial option turns on several types of checks in the kernel memory alloca-
tion functions; with these checks enabled, it is possible to detect a number of
memory overrun and missing initialization errors. Each byte of allocated memory
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is set to 0xa5 before being handed to the caller and then set to 0x6b when it is
freed. If you ever see either of those “poison” patterns repeating in output from
your driver (or often in an oops listing), you’ll know exactly what sort of error to
look for. When debugging is enabled, the kernel also places special guard values
before and after every allocated memory object; if those values ever get changed,
the kernel knows that somebody has overrun a memory allocation, and it com-
plains loudly. Various checks for more obscure errors are enabled as well.

CONFIG_DEBUG_PAGEALLOC
Full pages are removed from the kernel address space when freed. This option
can slow things down significantly, but it can also quickly point out certain
kinds of memory corruption errors.

CONFIG_DEBUG_SPINLOCK
With this option enabled, the kernel catches operations on uninitialized spin-
locks and various other errors (such as unlocking a lock twice).

CONFIG DEBUG SPINLOCK SLEEP
This option enables a check for attempts to sleep while holding a spinlock. In
fact, it complains if you call a function that could potentially sleep, even if the
call in question would not sleep.

CONFIG INIT DEBUG
Items marked with __init (or __initdata) are discarded after system initializa-
tion or module load time. This option enables checks for code that attempts to
access initialization-time memory after initialization is complete.

CONFIG_DEBUG_INFO
This option causes the kernel to be built with full debugging information
included. You’ll need that information if you want to debug the kernel with gdb.
You may also want to enable CONFIG_FRAME_POINTER if you plan to use gdb.

CONFIG_MAGIC SYSRQ
Enables the “magic SysRq” key. We look at this key in the section “System
Hangs,” later in this chapter.

CONFIG_DEBUG_STACKOVERFLOW

CONFIG_DEBUG_STACK_ USAGE
These options can help track down kernel stack overflows. A sure sign of a stack
overflow is an oops listing without any sort of reasonable back trace. The first
option adds explicit overflow checks to the kernel; the second causes the kernel
to monitor stack usage and make some statistics available via the magic SysRq
key.

CONFIG_KALLSYMS
This option (under “General setup/Standard features”) causes kernel symbol
information to be built into the kernel; it is enabled by default. The symbol
information is used in debugging contexts; without it, an oops listing can give
you a kernel traceback only in hexadecimal, which is not very useful.
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CONFIG_IKCONFIG

CONFIG_IKCONFIG_PROC
These options (found in the “General setup” menu) cause the full kernel config-
uration state to be built into the kernel and to be made available via /proc. Most
kernel developers know which configuration they used and do not need these
options (which make the kernel bigger). They can be useful, though, if you are
trying to debug a problem in a kernel built by somebody else.

CONFIG_ACPI_DEBUG
Under “Power management/ACPL.” This option turns on verbose ACPI
(Advanced Configuration and Power Interface) debugging information, which
can be useful if you suspect a problem related to ACPI.

CONFIG_DEBUG_DRIVER
Under “Device drivers.” Turns on debugging information in the driver core,
which can be useful for tracking down problems in the low-level support code.
We'll look at the driver core in Chapter 14.

CONFIG_SCSI_CONSTANTS
This option, found under “Device drivers/SCSI device support,” builds in infor-
mation for verbose SCSI error messages. If you are working on a SCSI driver, you
probably want this option.

CONFIG_INPUT EVBUG
This option (under “Device drivers/Input device support”) turns on verbose log-
ging of input events. If you are working on a driver for an input device, this
option may be helpful. Be aware of the security implications of this option, how-
ever: it logs everything you type, including your passwords.

CONFIG _PROFILING
This option is found under “Profiling support.” Profiling is normally used for
system performance tuning, but it can also be useful for tracking down some
kernel hangs and related problems.

We will revisit some of the above options as we look at various ways of tracking
down kernel problems. But first, we will look at the classic debugging technique:
print statements.

Debugging by Printing

The most common debugging technique is monitoring, which in applications pro-
gramming is done by calling printf at suitable points. When you are debugging ker-
nel code, you can accomplish the same goal with printk.
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printk

We used the printk function in earlier chapters with the simplifying assumption that
it works like printf. Now it’s time to introduce some of the differences.

One of the differences is that printk lets you classify messages according to their
severity by associating different loglevels, or priorities, with the messages. You usu-
ally indicate the loglevel with a macro. For example, KERN_INFO, which we saw
prepended to some of the earlier print statements, is one of the possible loglevels of
the message. The loglevel macro expands to a string, which is concatenated to the
message text at compile time; that’s why there is no comma between the priority and
the format string in the following examples. Here are two examples of printk com-
mands, a debug message and a critical message:

printk(KERN_DEBUG "Here I am: %s:%i\n", _ FILE_ , LINE_ );

printk(KERN_CRIT "I'm trashed; giving up on %p\n", ptr);
There are eight possible loglevel strings, defined in the header <linux/kernel.h>; we
list them in order of decreasing severity:

KERN_EMERG
Used for emergency messages, usually those that precede a crash.

KERN_ALERT
A situation requiring immediate action.

KERN CRIT
Critical conditions, often related to serious hardware or software failures.

KERN_ERR
Used to report error conditions; device drivers often use KERN_ERR to report hard-
ware difficulties.

KERN_WARNING
Warnings about problematic situations that do not, in themselves, create seri-
ous problems with the system.

KERN_NOTICE
Situations that are normal, but still worthy of note. A number of security-related
conditions are reported at this level.

KERN_INFO
Informational messages. Many drivers print information about the hardware
they find at startup time at this level.

KERN_DEBUG
Used for debugging messages.

Each string (in the macro expansion) represents an integer in angle brackets. Inte-
gers range from O to 7, with smaller values representing higher priorities.
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A printk statement with no specified priority defaults to DEFAULT MESSAGE LOGLEVEL,
specified in kernel/printk.c as an integer. In the 2.6.10 kernel, DEFAULT MESSAGE_LOGLEVEL
is KERN_WARNING, but that has been known to change in the past.

Based on the loglevel, the kernel may print the message to the current console, be it a
text-mode terminal, a serial port, or a parallel printer. If the priority is less than the
integer variable console loglevel, the message is delivered to the console one line at
a time (nothing is sent unless a trailing newline is provided). If both klogd and sys-
logd are running on the system, kernel messages are appended to /var/log/messages
(or otherwise treated depending on your syslogd configuration), independent of
console_loglevel. If klogd is not running, the message won'’t reach user space unless
you read /proc/kmsg (which is often most easily done with the dmesg command).
When using klogd, you should remember that it doesn’t save consecutive identical
lines; it only saves the first such line and, at a later time, the number of repetitions it
received.

The variable console loglevel is initialized to DEFAULT_CONSOLE_LOGLEVEL and can be
modified through the sys_syslog system call. One way to change it is by specifying
the —c switch when invoking klogd, as specified in the klogd manpage. Note that to
change the current value, you must first kill klogd and then restart it with the —c
option. Alternatively, you can write a program to change the console loglevel. You’ll
find a version of such a program in misc-progs/setlevel.c in the source files provided
on O’Reilly’s FTP site. The new level is specified as an integer value between 1 and 8,
inclusive. If it is set to 1, only messages of level O (KERN_EMERG) reach the console; if it
is set to 8, all messages, including debugging ones, are displayed.

It is also possible to read and modify the console loglevel using the text file /proc/sys/
kernel/printk. The file hosts four integer values: the current loglevel, the default level
for messages that lack an explicit loglevel, the minimum allowed loglevel, and the
boot-time default loglevel. Writing a single value to this file changes the current
loglevel to that value; thus, for example, you can cause all kernel messages to appear
at the console by simply entering:

# echo 8 > /proc/sys/kernel/printk

It should now be apparent why the hello.c sample had the KERN_ALERT; markers; they
are there to make sure that the messages appear on the console.

Redirecting Console Messages

Linux allows for some flexibility in console logging policies by letting you send mes-
sages to a specific virtual console (if your console lives on the text screen). By default,
the “console” is the current virtual terminal. To select a different virtual terminal to
receive messages, you can issue ioct1(TIOCLINUX) on any console device. The follow-
ing program, setconsole, can be used to choose which console receives kernel mes-
sages; it must be run by the superuser and is available in the misc-progs directory.
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The following is the program in its entirety. You should invoke it with a single argu-
ment specifying the number of the console that is to receive messages.

int main(int argc, char **argv)

{
char bytes[2] = {11,0}; /* 11 is the TIOCLINUX cmd number */
if (argc==2) bytes[1] = atoi(argv[1]); /* the chosen console */
else {
fprintf(stderr, "%s: need a single arg\n",argv[0]); exit(1);
if (ioctl(STDIN FILENO, TIOCLINUX, bytes)<o) {  /* use stdin */
fprintf(stderr,"%s: ioctl(stdin, TIOCLINUX): %s\n",
argv[0], strerror(errno));
exit(1);
}
exit(0);
}

setconsole uses the special ioctl command TIOCLINUX, which implements Linux-
specific functions. To use TIOCLINUX, you pass it an argument that is a pointer to a
byte array. The first byte of the array is a number that specifies the requested sub-
command, and the following bytes are subcommand specific. In setconsole, subcom-
mand 11 is used, and the next byte (stored in bytes[1]) identifies the virtual console.
The complete description of TIOCLINUX can be found in drivers/char/tty_io.c, in the
kernel sources.

How Messages Get Logged

The printk function writes messages into a circular buffer that is __L0G BUF_LEN bytes
long: a value from 4 KB to 1 MB chosen while configuring the kernel. The function
then wakes any process that is waiting for messages, that is, any process that is sleep-
ing in the syslog system call or that is reading /proc/kmsg. These two interfaces to the
logging engine are almost equivalent, but note that reading from /proc/kmsg con-
sumes the data from the log buffer, whereas the syslog system call can optionally
return log data while leaving it for other processes as well. In general, reading the
/proc file is easier and is the default behavior for klogd. The dmesg command can be
used to look at the content of the buffer without flushing it; actually, the command
returns to stdout the whole content of the buffer, whether or not it has already been
read.

If you happen to read the kernel messages by hand, after stopping klogd, you’ll find
that the /proc file looks like a FIFO, in that the reader blocks, waiting for more data.
Obviously, you can’t read messages this way if klogd or another process is already
reading the same data, because you’ll contend for it.

If the circular buffer fills up, printk wraps around and starts adding new data to the
beginning of the buffer, overwriting the oldest data. Therefore, the logging process
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loses the oldest data. This problem is negligible compared with the advantages of
using such a circular buffer. For example, a circular buffer allows the system to run
even without a logging process, while minimizing memory waste by overwriting old
data should nobody read it. Another feature of the Linux approach to messaging is
that printk can be invoked from anywhere, even from an interrupt handler, with no
limit on how much data can be printed. The only disadvantage is the possibility of
losing some data.

If the klogd process is running, it retrieves kernel messages and dispatches them to
syslogd, which in turn checks /etc/syslog.conf to find out how to deal with them. sys-
logd differentiates between messages according to a facility and a priority; allowable
values for both the facility and the priority are defined in <sys/syslog.h>. Kernel mes-
sages are logged by the LOG_KERN facility at a priority corresponding to the one used in
printk (for example, LOG_ERR is used for KERN_ERR messages). If klogd isn’t running,
data remains in the circular buffer until someone reads it or the buffer overflows.

If you want to avoid clobbering your system log with the monitoring messages from
your driver, you can either specify the —f (file) option to klogd to instruct it to save
messages to a specific file, or customize /etc/syslog.conf to suit your needs. Yet
another possibility is to take the brute-force approach: kill klogd and verbosely print
messages on an unused virtual terminal,” or issue the command cat /proc/kmsg from
an unused xterm.

Turning the Messages On and Off

During the early stages of driver development, printk can help considerably in debug-
ging and testing new code. When you officially release the driver, on the other hand,
you should remove, or at least disable, such print statements. Unfortunately, you’re
likely to find that as soon as you think you no longer need the messages and remove
them, you implement a new feature in the driver (or somebody finds a bug), and you
want to turn at least one of the messages back on. There are several ways to solve
both issues, to globally enable or disable your debug messages and to turn individ-
ual messages on or off.

Here we show one way to code printk calls so you can turn them on and off individu-
ally or globally; the technique depends on defining a macro that resolves to a printk
(or printf) call when you want it to:

* Each print statement can be enabled or disabled by removing or adding a single
letter to the macro’s name.

* All the messages can be disabled at once by changing the value of the CFLAGS
variable before compiling.

* For example, use setlevel 8; setconsole 10 to set up terminal 10 to display messages.
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* The same print statement can be used in kernel code and user-level code, so that
the driver and test programs can be managed in the same way with regard to
extra messages.

The following code fragment implements these features and comes directly from the
header scull.h:

#undef PDEBUG /* undef it, just in case */
#ifdef SCULL_DEBUG
# ifdef KERNEL _
/* This one if debugging is on, and kernel space */
# define PDEBUG(fmt, args...) printk( KERN_DEBUG "scull: " fmt, ## args)
# else
/* This one for user space */
# define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)
# endif
#else
# define PDEBUG(fmt, args...) /* not debugging: nothing */
#endif

#undef PDEBUGG
#tdefine PDEBUCG(fmt, args...) /* nothing: it's a placeholder */

The symbol PDEBUG is defined or undefined, depending on whether SCULL DEBUG is
defined, and displays information in whatever manner is appropriate to the environ-
ment where the code is running: it uses the kernel call printk when it’s in the kernel
and the libc call fprintf to the standard error when run in user space. The PDEBUGG
symbol, on the other hand, does nothing; it can be used to easily “comment” print
statements without removing them entirely.

To simplify the process further, add the following lines to your maketfile:

# Comment/uncomment the following line to disable/enable debugging
DEBUG = vy

# Add your debugging flag (or not) to CFLAGS
ifeq ($(DEBUG),y)
DEBFLAGS = -0 -g -DSCULL DEBUG # "-0" is needed to expand inlines
else
DEBFLAGS = -02
endif

CFLAGS += $(DEBFLAGS)

The macros shown in this section depend on a gcc extension to the ANSI C prepro-
cessor that supports macros with a variable number of arguments. This gcc depen-
dency shouldn’t be a problem, because the kernel proper depends heavily on gcc
features anyway. In addition, the makefile depends on GNU’s version of make; once
again, the kernel already depends on GNU make, so this dependency is not a problem.
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If you’re familiar with the C preprocessor, you can expand on the given definitions to
implement the concept of a “debug level,” defining different levels and assigning an
integer (or bit mask) value to each level to determine how verbose it should be.

But every driver has its own features and monitoring needs. The art of good pro-
gramming is in choosing the best trade-off between flexibility and efficiency, and we
can’t tell what is the best for you. Remember that preprocessor conditionals (as well
as constant expressions in the code) are executed at compile time, so you must
recompile to turn messages on or off. A possible alternative is to use C conditionals,
which are executed at runtime and, therefore, permit you to turn messaging on and
off during program execution. This is a nice feature, but it requires additional pro-
cessing every time the code is executed, which can affect performance even when the
messages are disabled. Sometimes this performance hit is unacceptable.

The macros shown in this section have proven themselves useful in a number of situ-
ations, with the only disadvantage being the requirement to recompile a module after
any changes to its messages.

Rate Limiting

If you are not careful, you can find yourself generating thousands of messages with
printk, overwhelming the console and, possibly, overflowing the system log file.
When using a slow console device (e.g., a serial port), an excessive message rate can
also slow down the system or just make it unresponsive. It can be very hard to get a
handle on what is wrong with a system when the console is spewing out data non-
stop. Therefore, you should be very careful about what you print, especially in pro-
duction versions of drivers and especially once initialization is complete. In general,
production code should never print anything during normal operation; printed out-
put should be an indication of an exceptional situation requiring attention.

On the other hand, you may want to emit a log message if a device you are driving
stops working. But you should be careful not to overdo things. An unintelligent pro-
cess that continues forever in the face of failures can generate thousands of retries per
second; if your driver prints a “my device is broken” message every time, it could cre-
ate vast amounts of output and possibly hog the CPU if the console device is slow—
no interrupts can be used to driver the console, even if it is a serial port or a line
printer.

In many cases, the best behavior is to set a flag saying, “I have already complained
about this,” and not print any further messages once the flag gets set. In others,
though, there are reasons to emit an occasional “the device is still broken” notice.
The kernel has provided a function that can be helpful in such cases:

int printk_ratelimit(void);
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*

This function should be called before you consider printing a message that could be
repeated often. If the function returns a nonzero value, go ahead and print your mes-
sage, otherwise skip it. Thus, typical calls look like this:
if (printk_ratelimit())
printk (KERN_NOTICE "The printer is still on fire\n");

printk_ratelimit works by tracking how many messages are sent to the console.
When the level of output exceeds a threshold, printk_ratelimit starts returning 0 and
causing messages to be dropped.

The behavior of printk_ratelimit can be customized by modifying /proc/sys/kernel/
printk_ratelimit (the number of seconds to wait before re-enabling messages) and are
Iproc/systkernel/printk_ratelimit_burst (the number of messages accepted before rate-
limiting).

Printing Device Numbers

Occasionally, when printing a message from a driver, you will want to print the
device number associated withp the hardware of interest. It is not particularly hard
to print the major and minor numbers, but, in the interest of consistency, the kernel
provides a couple of utility macros (defined in <linux/kdev_t.h>) for this purpose:

int print_dev_t(char *buffer, dev t dev);

char *format dev_t(char *buffer, dev_t dev);
Both macros encode the device number into the given buffer; the only difference is
that print_dev_t returns the number of characters printed, while format_dev_t returns
buffer; therefore, it can be used as a parameter to a printk call directly, although one
must remember that printk doesn’t flush until a trailing newline is provided. The
buffer should be large enough to hold a device number; given that 64-bit device
numbers are a distinct possibility in future kernel releases, the buffer should proba-
bly be at least 20 bytes long.

Debugging by Querying

The previous section described how printk works and how it can be used. What it
didn’t talk about are its disadvantages.

A massive use of printk can slow down the system noticeably, even if you lower
console_loglevel to avoid loading the console device, because syslogd keeps syncing
its output files; thus, every line that is printed causes a disk operation. This is the
right implementation from syslogd’s perspective. It tries to write everything to disk in
case the system crashes right after printing the message; however, you don’t want to
slow down your system just for the sake of debugging messages. This problem can be
solved by prefixing the name of your log file as it appears in /etc/syslogd.conf with a
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hyphen.” The problem with changing the configuration file is that the modification
will likely remain there after you are done debugging, even though during normal
system operation you do want messages to be flushed to disk as soon as possible. An
alternative to such a permanent change is running a program other than klogd (such
as cat /proc/kmsg, as suggested earlier), but this may not provide a suitable environ-
ment for normal system operation.

More often than not, the best way to get relevant information is to query the system
when you need the information, instead of continually producing data. In fact, every
Unix system provides many tools for obtaining system information: ps, netstat,
vmstat, and so on.

A few techniques are available to driver developers for querying the system: creating
a file in the /proc filesystem, using the ioctl driver method, and exporting attributes
via sysfs. The use of sysfs requires quite some background on the driver model. It is
discussed in Chapter 14.

Using the /proc Filesystem

The /proc filesystem is a special, software-created filesystem that is used by the ker-
nel to export information to the world. Each file under /proc is tied to a kernel func-
tion that generates the file’s “contents” on the fly when the file is read. We have
already seen some of these files in action; /proc/modules, for example, always returns
a list of the currently loaded modules.

/proc is heavily used in the Linux system. Many utilities on a modern Linux distribu-
tion, such as ps, top, and uptime, get their information from /proc. Some device driv-
ers also export information via /proc, and yours can do so as well. The /proc
filesystem is dynamic, so your module can add or remove entries at any time.

Fully featured /proc entries can be complicated beasts; among other things, they can
be written to as well as read from. Most of the time, however, /proc entries are read-
only files. This section concerns itself with the simple read-only case. Those who are
interested in implementing something more complicated can look here for the basics;
the kernel source may then be consulted for the full picture.

Before we continue, however, we should mention that adding files under /proc is dis-
couraged. The /proc filesystem is seen by the kernel developers as a bit of an uncon-
trolled mess that has gone far beyond its original purpose (which was to provide
information about the processes running in the system). The recommended way of
making information available in new code is via sysfs. As suggested, working with
sysfs requires an understanding of the Linux device model, however, and we do not

* The hyphen, or minus sign, is a “magic” marker to prevent syslogd from flushing the file to disk at every new
message, documented in syslog.conf(5), a manpage worth reading.
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get to that until Chapter 14. Meanwhile, files under /proc are slightly easier to cre-
ate, and they are entirely suitable for debugging purposes, so we cover them here.

Implementing files in /proc

All modules that work with /proc should include <linux/proc_fs.h> to define the
proper functions.

To create a read-only /proc file, your driver must implement a function to produce
the data when the file is read. When some process reads the file (using the read sys-
tem call), the request reaches your module by means of this function. We’ll look at
this function first and get to the registration interface later in this section.

When a process reads from your /proc file, the kernel allocates a page of memory (i.e.,
PAGE_SIZE bytes) where the driver can write data to be returned to user space. That
buffer is passed to your function, which is a method called read_proc:
int (*read_proc)(char *page, char **start, off_t offset, int count,
int *eof, void *data);

The page pointer is the buffer where you’ll write your data; start is used by the func-
tion to say where the interesting data has been written in page (more on this later);
offset and count have the same meaning as for the read method. The eof argument
points to an integer that must be set by the driver to signal that it has no more
data to return, while data is a driver-specific data pointer you can use for internal
bookkeeping.

This function should return the number of bytes of data actually placed in the page
buffer, just like the read method does for other files. Other output values are *eof
and *start. eof is a simple flag, but the use of the start value is somewhat more
complicated; its purpose is to help with the implementation of large (greater than
one page) /proc files.

The start parameter has a somewhat unconventional use. Its purpose is to indicate
where (within page) the data to be returned to the user is found. When your proc_read
method is called, *start will be NULL. If you leave it NULL, the kernel assumes that the
data has been put into page as if offset were 0; in other words, it assumes a simple-
minded version of proc_read, which places the entire contents of the virtual file in page
without paying attention to the offset parameter. If, instead, you set *start to a non-
NULL value, the kernel assumes that the data pointed to by *start takes offset into
account and is ready to be returned directly to the user. In general, simple proc_read
methods that return tiny amounts of data just ignore start. More complex methods set
*start to page and only place data beginning at the requested offset there.

There has long been another major issue with /proc files, which start is meant to
solve as well. Sometimes the ASCII representation of kernel data structures changes
between successive calls to read, so the reader process could find inconsistent data
from one call to the next. If *start is set to a small integer value, the caller uses it to
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increment filp->f pos independently of the amount of data you return, thus mak-
ing f pos an internal record number of your read_proc procedure. If, for example,
your read_proc function is returning information from a big array of structures, and
five of those structures were returned in the first call, *start could be set to 5. The
next call provides that same value as the offset; the driver then knows to start return-
ing data from the sixth structure in the array. This is acknowledged as a “hack” by its
authors and can be seen in fs/proc/generic.c.

Note that there is a better way to implement large /proc files; it’s called seq_file, and
we’ll discuss it shortly. First, though, it is time for an example. Here is a simple (if
somewhat ugly) read_proc implementation for the scull device:

int scull read procmem(char *buf, char **start, off t offset,
int count, int *eof, void *data)
{

int i, j, len = 0;
int 1imit = count - 80; /* Don't print more than this */

for (1 = 0; i < scull nr_devs 8& len <= limit; i++) {
struct scull dev *d = &scull devices[i];
struct scull_gset *qs = d->data;
if (down_interruptible(8&d->sem))
return -ERESTARTSYS;
len += sprintf(buf+len,"\nDevice %i: gset %i, q %i, sz %li\n",
i, d->qset, d->quantum, d->size);
for (; gs & len <= limit; qs = gs->next) { /* scan the list */
len += sprintf(buf + len, " item at %p, gset at %p\n",
gs, gs->data);
if (gs->data 8& !gs->next) /* dump only the last item */
for (j = 0; j < d->gset; j++) {
if (gs->data[j])
len += sprintf(buf + len,
" % 4i: %8p\n",
J» as->data[j]);
}

up(8scull devices[i].sem);

}
*eof = 1;
return len;
}
This is a fairly typical read_proc implementation. It assumes that there will never be a
need to generate more than one page of data and so ignores the start and offset val-
ues. It is, however, careful not to overrun its buffer, just in case.

An older interface

If you read through the kernel source, you may encounter code implementing /proc
files with an older interface:

int (*get_info)(char *page, char **start, off t offset, int count);
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All of the arguments have the same meaning as they do for read_proc, but the eof
and data arguments are missing. This interface is still supported, but it could go
away in the future; new code should use the read_proc interface instead.

Creating your /proc file

Once you have a read_proc function defined, you need to connect it to an entry in
the /proc hierarchy. This is done with a call to create_proc_read_entry:
struct proc_dir_entry *create proc_read entry(const char *name,
mode_t mode, struct proc_dir entry *base,
read proc_t *read proc, void *data);
Here, name is the name of the file to create, mode is the protection mask for the file (it
can be passed as 0 for a system-wide default), base indicates the directory in which the
file should be created (if base is NULL, the file is created in the /proc root), read_proc is
the read_proc function that implements the file, and data is ignored by the kernel (but
passed to read_proc). Here is the call used by scull to make its /proc function available
as /proc/scullmem:
create proc_read entry("scullmem", 0 /* default mode */,
NULL /* parent dir */, scull_read_procmem,
NULL /* client data */);
Here, we create a file called scullmem directly under /proc, with the default, world-
readable protections.

The directory entry pointer can be used to create entire directory hierarchies under
/proc. Note, however, that an entry may be more easily placed in a subdirectory of
/proc simply by giving the directory name as part of the name of the entry—as long
as the directory itself already exists. For example, an (often ignored) convention says
that /proc entries associated with device drivers should go in the subdirectory driver/,
scull could place its entry there simply by giving its name as driver/scullmem.

Entries in /proc, of course, should be removed when the module is unloaded.
remove_proc_entry is the function that undoes what create_proc_read_entry already
did:

remove_proc_entry("scullmem", NULL /* parent dir */);

Failure to remove entries can result in calls at unwanted times, or, if your module has
been unloaded, kernel crashes.

When using /proc files as shown, you must remember a few nuisances of the imple-
mentation—no surprise its use is discouraged nowadays.

The most important problem is with removal of /proc entries. Such removal may well
happen while the file is in use, as there is no owner associated to /proc entries, so
using them doesn’t act on the module’s reference count. This problem is simply trig-
gered by running sleep 100 < /proc/myfile just before removing the module, for example.
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Another issue is about registering two entries with the same name. The kernel trusts
the driver and doesn’t check if the name is already registered, so if you are not care-
ful you might end up with two or more entries with the same name. This is a prob-
lem known to happen in classrooms, and such entries are indistinguishable, both
when you access them and when you call remove_proc_entry.

The seq_file interface

As we noted above, the implementation of large files under /proc is a little awkward.
Over time, /proc methods have become notorious for buggy implementations when
the amount of output grows large. As a way of cleaning up the /proc code and mak-
ing life easier for kernel programmers, the seq_file interface was added. This inter-
face provides a simple set of functions for the implementation of large kernel virtual
files.

The seq_file interface assumes that you are creating a virtual file that steps through
a sequence of items that must be returned to user space. To use seq_file, you must
create a simple “iterator” object that can establish a position within the sequence,
step forward, and output one item in the sequence. It may sound complicated, but,
in fact, the process is quite simple. We’ll step through the creation of a /proc file in
the scull driver to show how it is done.

The first step, inevitably, is the inclusion of <linux/seq_file.h>. Then you must create
four iterator methods, called start, next, stop, and show.

The start method is always called first. The prototype for this function is:
void *start(struct seq file *sfile, loff t *pos);

The sfile argument can almost always be ignored. pos is an integer position indicat-
ing where the reading should start. The interpretation of the position is entirely up to
the implementation; it need not be a byte position in the resulting file. Since seq_file
implementations typically step through a sequence of interesting items, the position
is often interpreted as a cursor pointing to the next item in the sequence. The scull
driver interprets each device as one item in the sequence, so the incoming pos is sim-
ply an index into the scull devices array. Thus, the start method used in scull is:

static void *scull seq start(struct seq file *s, loff t *pos)

{
if (*pos >= scull nr_devs)
return NULL;  /* No more to read */
return scull devices + *pos;

}

The return value, if non-NULL, is a private value that can be used by the iterator
implementation.

The next function should move the iterator to the next position, returning NULL if
there is nothing left in the sequence. This method’s prototype is:

void *next(struct seq file *sfile, void *v, loff t *pos);
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Here, v is the iterator as returned from the previous call to start or next, and pos is
the current position in the file. next should increment the value pointed to by pos;
depending on how your iterator works, you might (though probably won’t) want to
increment pos by more than one. Here’s what scull does:

static void *scull seq_next(struct seq file *s, void *v, loff t *pos)

{
(*pos)++;
if (*pos »>= scull nr devs)
return NULL;
return scull devices + *pos;
}

When the kernel is done with the iterator, it calls stop to clean up:
void stop(struct seq file *sfile, void *v);
The scull implementation has no cleanup work to do, so its stop method is empty.

It is worth noting that the seq_file code, by design, does not sleep or perform other
nonatomic tasks between the calls to start and stop. You are also guaranteed to see
one stop call sometime shortly after a call to start. Therefore, it is safe for your start
method to acquire semaphores or spinlocks. As long as your other seq file meth-
ods are atomic, the whole sequence of calls is atomic. (If this paragraph does not
make sense to you, come back to it after you’ve read the next chapter.)

In between these calls, the kernel calls the show method to actually output some-
thing interesting to the user space. This method’s prototype is:

int show(struct seq file *sfile, void *v);

This method should create output for the item in the sequence indicated by the itera-
tor v. It should not use printk, however; instead, there is a special set of functions for
seq_file output:

int seq_printf(struct seq_file *sfile, const char *fmt, ...);
This is the printf equivalent for seq_file implementations; it takes the usual for-
mat string and additional value arguments. You must also pass it the seq_file
structure given to the show function, however. If seq_printf returns a nonzero
value, it means that the buffer has filled, and output is being discarded. Most
implementations ignore the return value, however.

int seq_putc(struct seq_file *sfile, char c);
int seq_puts(struct seq file *sfile, const char *s);
These are the equivalents of the user-space putc and puts functions.

int seq_escape(struct seq file *m, const char *s, const char *esc);
This function is equivalent to seq_puts with the exception that any character in
s that is also found in esc is printed in octal format. A common value for esc is
" \t\nm\\", which keeps embedded white space from messing up the output and
possibly confusing shell scripts.
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int seq path(struct seq file *sfile, struct vfsmount *m, struct dentry
*dentry, char *esc);
This function can be used for outputting the file name associated with a given
directory entry. It is unlikely to be useful in device drivers; we have included it
here for completeness.

Getting back to our example; the show method used in scull is:

static int scull seq show(struct seq file *s, void *v)
{
struct scull dev *dev = (struct scull dev *) v;
struct scull gset *d;
int i;

if (down_interruptible(8dev->sem))
return -ERESTARTSYS;
seq_printf(s, "\nDevice %i: gset %i, q %i, sz %li\n",
(int) (dev - scull devices), dev->gset,
dev->quantum, dev->size);
for (d = dev->data; d; d = d->next) { /* scan the list */
seq_printf(s, " item at %p, gset at %p\n", d, d->data);
if (d->data & !d->next) /* dump only the last item */
for (i = 0; i < dev->gset; i++) {
if (d->data[i])
seq_printf(s, " % 41i: %8p\n",
i, d->data[i]);
}

up(8dev->sem);
return 0;

}

Here, we finally interpret our “iterator” value, which is simply a pointer to a scull dev
structure.

Now that it has a full set of iterator operations, scull must package them up and
connect them to a file in /proc. The first step is done by filling in a seq_operations
structure:

static struct seq operations scull seq ops = {
.start = scull_seq_start,
.next = scull seq_next,
.stop scull seq stop,
.show = scull_seq_show

};
With that structure in place, we must create a file implementation that the kernel
understands. We do not use the read_proc method described previously; when using
seq_file, it is best to connect in to /proc at a slightly lower level. That means creat-
ing a file operations structure (yes, the same structure used for char drivers) imple-
menting all of the operations needed by the kernel to handle reads and seeks on the
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file. Fortunately, this task is straightforward. The first step is to create an open
method that connects the file to the seq_file operations:

static int scull proc_open(struct inode *inode, struct file *file)
{
}

The call to seq_open connects the file structure with our sequence operations
defined above. As it turns out, open is the only file operation we must implement
ourselves, so we can now set up our file operations structure:

return seq open(file, &scull seq_ ops);

static struct file operations scull proc ops = {
.owner = THIS_MODULE,
.open = scull proc_open,
.read = seq_read,
.1lseek = seq_lseek,
.release = seq_release
};
Here we specify our own open method, but use the canned methods seq_read, seq_
Iseek, and seq_release for everything else.

The final step is to create the actual file in /proc:

entry = create proc_entry("scullseq", 0, NULL);
if (entry)
entry->proc_fops = &scull proc_ops;
Rather than using create_proc_read_entry, we call the lower-level create_proc_entry,
which has this prototype:
struct proc_dir entry *create proc_entry(const char *name,
mode_t mode,
struct proc_dir entry *parent);
The arguments are the same as their equivalents in create_proc_read_entry: the name
of the file, its protections, and the parent directory.

With the above code, scull has a new /proc entry that looks much like the previous
one. It is superior, however, because it works regardless of how large its output
becomes, it handles seeks properly, and it is generally easier to read and maintain.
We recommend the use of seq_file for the implementation of files that contain more
than a very small number of lines of output.

The ioctl Method

ioctl, which we show you how to use in Chapter 1, is a system call that acts on a file
descriptor; it receives a number that identifies a command to be performed and
(optionally) another argument, usually a pointer. As an alternative to using the /proc
filesystem, you can implement a few ioctl commands tailored for debugging. These
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commands can copy relevant data structures from the driver to user space where you
can examine them.

Using ioctl this way to get information is somewhat more difficult than using /proc,
because you need another program to issue the ioctl and display the results. This pro-
gram must be written, compiled, and kept in sync with the module you’re testing.
On the other hand, the driver-side code can be easier than what is needed to imple-
ment a /proc file.

There are times when ioctl is the best way to get information, because it runs faster
than reading /proc. If some work must be performed on the data before it’s written to
the screen, retrieving the data in binary form is more efficient than reading a text file.
In addition, ioctl doesn’t require splitting data into fragments smaller than a page.

Another interesting advantage of the ioctl approach is that information-retrieval com-
mands can be left in the driver even when debugging would otherwise be disabled.
Unlike a /proc file, which is visible to anyone who looks in the directory (and too
many people are likely to wonder “what that strange file is”), undocumented ioctl
commands are likely to remain unnoticed. In addition, they will still be there should
something weird happen to the driver. The only drawback is that the module will be
slightly bigger.

Debugging by Watching

Sometimes minor problems can be tracked down by watching the behavior of an
application in user space. Watching programs can also help in building confidence
that a driver is working correctly. For example, we were able to feel confident about
scull after looking at how its read implementation reacted to read requests for differ-
ent amounts of data.

There are various ways to watch a user-space program working. You can run a
debugger on it to step through its functions, add print statements, or run the pro-
gram under strace. Here we’ll discuss just the last technique, which is most interest-
ing when the real goal is examining kernel code.

The strace command is a powerful tool that shows all the system calls issued by a
user-space program. Not only does it show th