Embedded Linux Conference Europe 2022

Walking Through the

Linux-Based Graphics bOOUIﬂ
Stack

Paul Kocialkowski
paul@bootlin.com Q
OO\«

embedded Linux and kernel engineering

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Paul Kocialkowski

Embedded Linux engineer at Bootlin
Embedded Linux expertise
Development, consulting and training
Strong open-source focus
Open-source contributor
Co-maintainer of the cedrus VPU driver in V4L2
Author of the ov5648 and ov8865 V4L2 camera sensor drivers
Author of the logicve-drm DRM display controller driver
Contributor to the sundi-drm DRM display controller driver
Developed the displaying and rendering graphics with Linux training

Living in Toulouse, south-west of France

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Talk Outline

Agenda:
Big Picture Overview of Graphics
Early Graphics

Graphics on a Running System

Focus:
System-level aspects
Shed light on little-known aspects

Code references to popular/reference projects

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

3/1

Walking Through the Linux-Based Graphics Stack

Big Picture Overview of Graphics

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Graphics Hardware: Memory

Graphics data (pixels) storage:
Framebuffers are the memory areas for pixles

Memory location depends on the situation:

System memory or dedicated graphics memory
Paged (fragmented) or contiguous memory

Specific formats, modifiers, compression, lack of meta-data

Graphics memory access:
Hardware-side memory access: DMA, IOMMU

System-side memory access: bus mapping, cache

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/1

Graphics Hardware: Displaying

Pixels mixing: planes/layers (rotation, scaling, format and more)
Timings generation: CRTC

Interface layer: encoder (controller, PHY)

Transcoding: bridge

Surface: panel, monitor, various technologies

Memory FIFOs Sync FIFO Display Interface Display Interface
Framebuffer ~——> Plane]—> CRTC o Encoder —> Bridge —>| Panel / Monitor
Framebuffer ~ ——> Plane

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

@e Graphics Hardware: Rendering

GPUs are the all-in-one approach for rendering 3D and 2D

Vector drawing units exist but are rarely used
Pixels mixers also left out in most cases

Specific hardware features for the task:

Programmable pipeline with shaders: vertex, geometry, fragment
Dedicated vector/SIMD instruction set(s)

Texture mapping units, cache

Tiled framebuffer representations

Requires a dedicated compiler for shaders
Configured via a command stream in memory

High complexity and power usage

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

7/1

Graphics APls: Linux kernel

Linux kernel subsystms and uAPIs:
Fbdev: covers display, legacy: missing many many features

DRM: modern subsystem for graphics

KMS: covers display, up-to-date

KMS atomic: extension for atomic state changes

GEM: memory management, zero-copy (PRIME), fences (Syncobj)
Render: covers rendering, driver-specific

Low-level libraries:

libdrm: wrapper for DRM syscalls

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

8/1

6@ Graphics APls: Displaying in Userspace

Low-level display server APls:
X11: legacy protocol with various issues, various extensions

Wayland: modern protocol, various extensions

Associated low-level libraries:
Xlib, XCB: X11 protocol and extensions wrapper
libwayland-{display,server}: Wayland protocols marshalling

Higher-level graphics libraries/toolkits:
Qt, GTK, EFL: widget-based toolkits
SDL: drawing-oriented toolkit

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

9/1

6@ Graphics APls: 2D Rendering in Userspace

Base drawing libraries: .
Cai drawi Font rendering:
airo: vector drawin
Y wing FreeType: Font rendering

kia: tor drawi
Skia: vector drawing Harfbuzz: Font rendering

Pixel-level libraries: .
Ul rendering:
Pixman: pixel-level operations .)
EF e f y Graphics toolkits
mpeg swscale: format, scalin) i
Peg & ImGui, nuklear: Immediate-mode
G’MIC: processing

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

4% Graphics APls: 3D Rendering in Userspace

Rationale: providing high-level access to 3D rendering

Standard APls/formats:
| | | GoenGL
» OpenGL (ES): Stateful high-level rendering
® GLSL: OpenGL shading language C
> EGL: Window system integration penGL|ES“

¢ GBM: EGL-DRM KMS glue
> Vulkan: Stateless lower-level, low-overhead rendering

EGL.

® SPIR-V: Intermediate representation for shaders (\,
Vuikan.

Implementations:
> Mesa 3D: reference free software, using DRM

> Proprietary: hardware-specific, various issues

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

11/1

Summary Diagram

User space

Display protocol

Hardware

Applications
API
API 1 >
Toolkits

lDispIay protocol OpenGL, Vulkan

EGL
Display Server
oo lbdm o ______
DRM KMS —_— DRM GEM <«
Registers Allocation, mapping

Display Engine |€———— DRAM/VRAM |€——>

DMA DMA

2D rendering
libraries

OpenGL, Vulkan

Mesa 3D

Driver uAPI

DRM Render

Command stream

GPU

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

12/1

Walking Through the Linux-Based Graphics Stack

Early Graphics

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Framebuffer Console

Why do we need early graphics?

Show a sign of life before init
Kernel and init logs for debugging
LUKS password entry in initramfs
fbcon implements a VT/TTY bridge with graphics:
stdin is grabbed via the input subsystem
stdout is rendered and displayed via fbdev
Can be used for kernel logs: console=tty1
Enabled with CONFIG_FRAMEBUFFER_CONSOLE
Can also display a logo: CONFIG_LOGO

Framebuffer device provided by:

Boot software: VESA, EFI, device-tree (simple-framebuffer)
Dedicated driver: hardware-specific
DRM fb helper: compatibility layer

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

14/1

4% Framebuffer Console: Code Highlights

Linux kernel:

> drivers/video/fbdev/core/fbcon.c:
® struct consw fb_con

fbcon_set_bitops()

fbcon_prepare_logo()

do_fbcon_takeover()

fbcon_redraw()

fbcon_putc()

» drivers/video/fbdev/core/bitblit.c:
® bit_putcs()
> drivers/tty/vt/vt.c:

® struct tty_operations con_ops
® do_update_region()
® do_take_over_console

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

% DRM FB Helper: Code Highlights

Linux kernel:

> drivers/gpu/drm/drm_fb_helper.c:

® struct fb_ops drm_fbdev_fb_ops

drm_fbdev_generic_setup
drm_fb_helper_generic_probe()
__drm_fb_helper_initial_config_and_unlock()
drm_fb_helper_single_fb_probe()
drm_fb_helper_pan_display

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Bootsplash

Users expect a waiting screen rather than logs

Not a kernel-level feature:

Dedicated applications for the task
Running after init, as root
Typically in the initramfs

Using either fbdev or DRM KMS directly

Often show systemd boot progress

Various implementations exist:
Plymouth: most advanced, progress, animations, supports DRM KMS and fbdev
Psplash: from Yocto Project, progress, uses fbdev
Fbsplash: themable, progress, uses fbdev

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Walking Through the Linux-Based Graphics Stack

Running System

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

VT Mode

fbcon takes over VT at boot
As soon as framebuffer is available
VT sharing between fbcon /userspace:

Access to the display must be exclusive
Privileged operations

Fbcon needs to be detached

Requires active cooperation

VT modes reflect the current VT state:

KD_TEXT: fbcon is attached to the VT

KD_GRAPHICS: ready for userspace graphics use
Switched upon request with KDSETMODE ioctl,
using the TTY fd (controlling terminal or not)

Similar mechanism exists for input

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

VT Switching

Multiple VTs/TTYs are spawned at boot:
A single VT is active at a time (tty1 at boot)
Switching triggered with: Ctrl + Alt + F[n]
No userspace intervention for fbcon
Coordination required when userspace uses graphics:
Kernel needs to notify application of VT switching
Signal-based release/acquire handlers registered with VT_SETMODE ioctl
Graphics resources need to be released/re-acquired
Kernel waits for acknowledge (can hang)
Implications for complex systems:
Multiple graphics sessions can run in parallel!
Typically the case with the login manager
Other limitations might restrict this ability

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

4% VT Mode and Switching: Code Highlights

Linux kernel: Weston:
> drivers/tty/vt/vt_ioctl.c: > libweston/weston-launch.c:
® vt_k_ioctl() ® setup_tty()
® vt_kdsetmode() ® handle_signal()
: change_console() > libweston/launcher-direct.c:

complete_change_console() o setup_tty()

> drivers/tty/vt/vt.c: ® vt_handler()

® set_console()
® console_callback()

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Sytemd Logind

Configuring graphics (and VT) are privileged operations
Corresponds to DRM KMS master privilege:
DRM_IOCTL_SET_MASTER/DRM_IOCTL_DROP_MASTER on DRM KMS fd
Typically restricted to the root user
Used to require running the display server as root
(Very) problematic security implications

Systemd introduced systemd-logind:
Runs as root and opens DRM KMS and VT TTY fds
Provides a D-Bus service for applications (display servers):
org.freedesktop.logini
DRM KMS fd is passed over UNIX socket
VT operations are made available as methods
Applications can run as regular users!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

4% Sytemd Logind: Code Highlights

Systemd:
> src/login/logind-session-device.c:
® session_device_open()
» src/login/logind-session.c:
® manager_vt_switch()
> src/login/logind-session.c:

® session_open_vt()/session_prepare_vt()
® session_restore_vt()/session_leave_vt()

> src/login/logind-session-dbus.c:
® method_take_device()/method_release_device()
Weston:
> libweston/launcher-logind.c:

® launcher_logind_take_device()/launcher_logind_release_device
® launcher_logind_activate_vt()

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Lo
ogin manager

Login managers provide a graphical equivalent to getty
Run their own display server under their own user

Started at the end of the boot process (on first VT)

Allow selecting between different sessions:

X.org: /usr/share/xsessions/ desktop files

Wayland: /usr/share/wayland-sessions/ desktop files
Starts display server in user context:

Usually authenticated via PAM
Usually in a dedicated VT

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

Display Server: Submitting Pixels

Actualy transfer of pixels is deprecated:

Zero-copy buffer sharing with display server is used instead

Buffers are identified by APl-specific identifiers (e.g. fds)
Buffer sharing has two major instances:

SHM: Typically drawn by the CPU

EGL: Typically drawn by the GPU
Allocation is often managed by APIs

Zero-copy import may be possible:

e.g. EGL_EXT_image_dma_buf_import

Might cause hardware access issues (but usually works)
Coordination with the display server for presentation:

Damage region provided by application (e.g. wl_surface_damage)
Sync point when ready for presentation (e.g. wl_surface_commit)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

4% Display Server: Submitting Pixels: Code Highlights

Weston:

> clients/simple-damage.c:
® create_window()
® redraw()

> clients/simple-shm.c:
® create_display()
® redraw()

> clients/simple-egl.c:
® create_surface()
® init_egl()
® redraw()

> clients/simple-dmabuf-egl.c:

® create_dmabuf_buffer()
® redraw()

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Display Server: Compositing

A unique buffer is submitted to the display hardware:
Contains the contents of all visible applications
Stacked according to window manager policy
Needs to be redrawn upon (visible) application indication
Compositing is a very demanding task:
Full redraw must be avoided at all costs!
Can run up to display frame rate (e.g. 60 Hz)
Damage is tracked and used for clipping regions
Hardware acceleration is leveraged (if not necessary):
Typically renderd with the GPU, buffers as textures
Hardware planes can be leveraged, but usually not (prinary only)
Cursor is typically composited by the hardware with a dedicated plane

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

4% Display Server: Compositing: Code Highlights

Weston:
> libweston/pixman-renderer.c:
® pixman_renderer_repaint_output()
draw_view()
repaint_region()
composite_clipped()

> libweston/renderer-gl/gl-renderer.c:
® gl_renderer_repaint_output()

draw_view()

repaint_region()

texture_region()

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Display Server: Page Flipping

Tearing is a well-known issue with display sync:

Display hardware scans out buffer at given address

Scanout happens continuouslty at refresh rate

Display server needs to update the presented contents

Concurrent read (hardware) and write (displays erver) causes a glitch
Tearing is resolved with a double-buffering approach:

Front buffer is shown, back buffer is being prepared

Roles are exchanged at next vertical sync (vblank) point

More buffers can be used but increase latency

DRM KMS ensures page flipping happens at vblank:

Scheduled using DRM_IOCTL_MODE_PAGE_FLIP (with target)
Scheduled with atomic commit using DRM_IOCTL_MODE_ATOMIC
Can notify userspace (blocking or async event) when done

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

4% Display Server: Page Flipping: Code Highlights

Weston:

> libweston/backend-drm/kms.c:

drm_output_apply_state_atomic()
drm_pending_state_apply_atomic()
drm_output_apply_state_legacy()
drm_output_set_cursor()
atomic_flip_handler()/page_flip_handler()

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

30/1

Questions? Suggestions? Comments?

Paul Kocialkowski

paul@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

0O0tIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

https://bootlin.com/pub/conferences/

