
Yocto Project and OpenEmbedded development training
On-line seminar, 4 sessions of 4 hours

Latest update: April 08, 2024

Title Yocto Project and OpenEmbedded development training

Training objectives
• Be able to understand the role and principle of an embedded Linux
build system, and compare Yocto Project/OpenEmbedded to other
tools offering similar functionality.

• Be able to configure and build basic embedded Linux system with
Yocto, and install the result on an embedded platform.

• Be able to write and extend recipes, for your own packages or cus-
tomizations.

• Be able to use existing layers of recipes, and create your own new
layers.

• Be able to integrate support for your own embedded board into a BSP
layer.

• Be able to create custom images.
• Be able to use the Yocto Project SDK to develop applications.
• Be able to use devtool to generate and modify recipes.

Duration Four half days - 16 hours (4 hours per half day)

Pedagogics • Lectures delivered by the trainer, over video-conference. Participants
can ask questions at any time.

• Practical demonstrations done by the trainer, based on practical labs,
over video-conference. Participants can ask questions at any time.
Optionally, participants who have access to the hardware accessories
can reproduce the practical labs by themselves.

• Instant messaging for questions between sessions (replies under 24h,
outside of week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files.
They are freely available at https://bootlin.com/doc/training/yocto.

Trainer One of the engineers listed on:
https://bootlin.com/training/trainers/

Language Oral lectures: English, French, Italian.
Materials: English.

https://bootlin.com/doc/training/yocto
https://bootlin.com/training/trainers/


Audience Companies and engineers interested in using the Yocto Project to build their
embedded Linux system.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands:
participants must be familiar with the Linux command line. Par-
ticipants lacking experience on this topic should get trained by
themselves, for example with our freely available on-line slides at
bootlin.com/blog/command-line/.

• Minimal experience in embedded Linux development: participants
should have a minimal understanding of the architecture of embedded
Linux systems: role of the Linux kernel vs. user-space, development
of Linux user-space applications in C. Following Bootlin’s Embedded
Linux course at bootlin.com/training/embedded-linux/ allows to fulfill
this pre-requisite.

• Minimal English language level: B1, according to the Common
European Framework of References for Languages, for our ses-
sions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-
evaluation.

Required equipment
• Computer with the operating system of your choice, with the Google
Chrome or Chromium browser for videoconferencing.

• Webcam and microphone (preferably from an audio headset)
• High speed access to the Internet

Certificate Only the participants who have attended all training sessions, and who have
scored over 50% of correct answers at the final evaluation will receive a
training certificate from Bootlin.

Disabilities Participants with disabilities who have special needs are invited to contact
us at training@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf


Hardware, first option

BeagleBone Black board
• An ARM AM335x processor from Texas
Instruments (Cortex-A8 based), 3D accel-
eration, etc.

• 512 MB of RAM
• 2 GB of on-board eMMC storage
(4 GB in Rev C)

• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI
buses, I2C buses and more.

Hardware, second option

One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-DK2
or STM32MP157F-DK2

• STM32MP157 (dual Cortex-A7) CPU from
STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino Uno v3-compatible headers
• Audio codec
• Misc: buttons, LEDs
• LCD touchscreen (DK2 kits only)



Half day 1

Lecture - Introduction to embedded Linux build systems

• Overview of an embedded Linux system architecture
• Methods to build a root filesystem image
• Usefulness of build systems

Lecture - Yocto Project and Poky reference system overview

• Introduction to the Yocto / OpenEmbedded build system and its lexicon
• Overview of the Poky reference system

Lecture - Using Yocto Project - basics Demo 1 - First Yocto Project build

• Setting up the build directory and environ-
ment

• Configuring the build system
• Building a root filesystem image

• Downloading the Poky reference build sys-
tem

• Configuring the build system
• Building a system image

Lecture - Using Yocto Project - basics Demo 1 - Flashing and booting

• Organization of the build output • Flashing and booting the image on the board



Half day 2

Lecture - Using Yocto Project - advanced usage Demo 2 - Using NFS and configuring the build

• Variable assignment, operators and over-
rides

• Package variants and package selection
• bitbake command line options

• Configuring the board to boot over NFS
• Add a package to the root filesystem
• Learn how to use the PREFERRED_
PROVIDER mechanism

• Get familiar with the bitbake command line
options

Lecture - Writing recipes - basics Demo 3 - Adding an application to the build

• Recipes: overview
• Recipe file organization
• Applying patches
• Recipe examples

• Writing a recipe for nInvaders
• Troubleshooting the recipe
• Troubleshooting cross-compilation issues
• Adding ninvaders to the final image

Lecture - Writing recipes - advanced features

• Extending and overriding recipes
• Virtual packages
• Learn about classes
• BitBake file inclusions
• Debugging recipes
• Configuring BitBake network usage



Half day 3

Lecture - Layers Demo 4 - Writing a layer

• What layers are
• Where to find layers
• Creating a layer

• Learn how to write a layer
• Add the layer to the build
• Move ninvaders to the new layer

Demo 5 - Extend a recipe

• Extend the kernel recipe to add patches
• Configure the kernel to compile the nunchuk driver
• Edit the ninvaders recipe to add patches
• Play nInvaders

Lecture - Writing a BSP Demo 6 - Create a custom machine configura-
tion

• Introduction to BSP layers
• Adding a new machine
• Bootloader configuration
• Linux: the kernel bbclass and the linux-
yocto recipe

• Create a new machine configuration
• Build an image for the new machine

Lecture - Distro layers

• Distro configuration
• Distro layers



Lecture - Images Demo 7 - Create a custom image

• Writing an image recipe
• Image types
• Writing and using package groups recipes

• Add a basic image recipe
• Select the image capabilities and packages
• Add a custom package group
• Add an image variant for debugging

Half day 4

Lecture - Writing recipes - going further Lecture - Licensing

• The per-recipe sysroot
• Using Python code in metadata
• Variable flags
• Packages features and PACKAGECONFIG
• Conditional features
• Package splitting
• Dependencies in detail

• Managing open source licenses

Lecture - The Yocto Project SDK Demo 8 - Develop your application in the Poky
SDK

• Goals of the SDK
• Building and customizing an SDK
• Using the Yocto Project SDK

• Building an SDK
• Using the Yocto Project SDK

Lecture - Devtool Demo 9 - Using devtool

• About devtool
• Devtool use cases

• Generate a new recipe
• Modify a recipe to add a new patch
• Upgrade a recipe to a newer version



Lecture - Automating layer management Lecture - Runtime Package Management

• Automating layer management • Introduction to runtime package manage-
ment

• Build configuration
• Package server configuration
• Target configuration

Questions and Answers

• Questions and answers with the audience about the course topics
• Extra presentations if time is left, according what most participants are interested in.

Possible extra time
Extra time (up to 4 hours) may be proposed if the agenda didn’t fit in 4 half days, according to the time spent
answering questions from participants.


