
Linux kernel and driver development training

Linux kernel and driver
development training

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: May 13, 2025.

Document updates and training details:
https://bootlin.com/training/kernel

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/437

https://bootlin.com/training/kernel
mailto:feedback@bootlin.com

Linux kernel and driver development training

▶ These slides are the training materials for Bootlin’s Linux kernel
and driver development training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/kernel

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/437

https://bootlin.com/training/kernel

About Bootlin

About Bootlin

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/437

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/437

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/437

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/437

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 9000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 6000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/437

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ Twitter:
https://twitter.com/bootlincom

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/437

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://twitter.com/bootlincom
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/437

Supported hardware

BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org
▶ Texas Instruments AM335x (ARM Cortex-A8 CPU)
▶ SoC with 3D acceleration, additional processors (PRUs) and lots of

peripherals.
▶ 512 MB of RAM
▶ 4 GB of on-board eMMC storage
▶ USB host and USB device, microSD, micro HDMI
▶ WiFi and Bluetooth (wireless version), otherwise Ethernet
▶ 2 x 46 pins headers, with access to many expansion buses (I2C, SPI, UART

and more)
▶ A huge number of expansion boards, called capes. See

https://elinux.org/Beagleboard:BeagleBone_Capes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/437

https://beagleboard.org
https://elinux.org/Beagleboard:BeagleBone_Capes

Labs proposed on another platform

You can also run the labs of this course on the Beagleplay
board.

Lab instructions are available at
https://bootlin.com/doc/training/linux-kernel-

beagleplay/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/437

https://bootlin.com/doc/training/linux-kernel-beagleplay/
https://bootlin.com/doc/training/linux-kernel-beagleplay/

Shopping list: hardware for this course

▶ BeagleBone Black or BeagleBone Black Wireless - Multiple distributors:
See https://www.beagleboard.org/boards.

▶ USB Serial Cable - 3.3 V - Female ends (for serial console) 1

▶ Nintendo Nunchuk with UEXT connector 2

▶ Breadboard jumper wires - Male ends (to connect the Nunchuk) 3

▶ USB Serial Cable - 3.3 V - Male ends (for serial labs, two if possible) 4

▶ Note that both USB serial cables are the same.
Only the gender of their connector changes.

1
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/

2
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

3
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

4
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-M/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/437

https://www.beagleboard.org/boards
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-M/

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/437

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/437

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/437

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/437

Linux Kernel Introduction

Linux Kernel
Introduction

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/437

Origin

▶ The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

• Linux quickly started to be used as the kernel for free software
operating systems

▶ Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

▶ As of today, about 2,000+ people contribute to each kernel
release, individuals or companies big and small. Linus Torvalds in 2014

Image credits (Wikipedia):
https://bit.ly/2UIa1TD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/437

https://bit.ly/2UIa1TD

Linux kernel in the system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/437

Linux kernel main roles

▶ Manage all the hardware resources: CPU, memory, I/O.
▶ Provide a set of portable, architecture and hardware independent APIs to

allow user space applications and libraries to use the hardware resources.
▶ Handle concurrent accesses and usage of hardware resources from different

applications.
• Example: a single network interface is used by multiple user space applications

through various network connections. The kernel is responsible for “multiplexing”
the hardware resource.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/437

System calls

▶ The main interface between the kernel and user space is
the set of system calls

▶ About 400 system calls that provide the main kernel
services

• File and device operations, networking operations,
inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.

▶ This system call interface is wrapped by the C library,
and user space applications usually never make a system
call directly but rather use the corresponding C library
function

Image credits (Wikipedia):
https://bit.ly/2U2rdGB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/437

https://bit.ly/2U2rdGB

Pseudo filesystems

▶ Linux makes system and kernel information available in user space through
pseudo filesystems, sometimes also called virtual filesystems

▶ Pseudo filesystems allow applications to see directories and files that do not exist
on any real storage: they are created and updated on the fly by the kernel

▶ The two most important pseudo filesystems are
• proc, usually mounted on /proc:

Operating system related information (processes, memory management
parameters...)

• sysfs, usually mounted on /sys:
Representation of the system as a tree of devices connected by buses. Information
gathered by the kernel frameworks managing these devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/437

Linux Kernel Introduction

Linux kernel sources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/437

Location of the official kernel sources

▶ The mainline versions of the Linux kernel, as released by Torvalds
• These versions follow the development model of the kernel (master branch)
• They may not contain the latest developments from a specific area yet
• A good pick for products development phase
• https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/437

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

Linux versioning scheme

▶ Until 2003, there was a new “stabilized” release branch of Linux every 2 or 3 years
(2.0, 2.2, 2.4). Development branches took 2-3 years to be merged (too slow!).

▶ Since 2003, there is a new official release of Linux about every 10 weeks:
• Versions 2.6 (Dec. 2003) to 2.6.39 (May 2011)
• Versions 3.0 (Jul. 2011) to 3.19 (Feb. 2015)
• Versions 4.0 (Apr. 2015) to 4.20 (Dec. 2018)
• Versions 5.0 (Mar. 2019) to 5.19 (July 2022)
• Version 6.0 was released in Oct. 2022.

▶ Features are added to the kernel in a progressive way. Since 2003, kernel
developers have managed to do so without having to introduce a massively
incompatible development branch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/437

Linux development model

▶ Each new release starts with a two-week merge window for new features
▶ Follow about 8 release candidates (one week each)
▶ Until adoption of a new official release.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/437

Need to further stabilize the official kernels

▶ Issue: bug and security fixes only merged into the master branch, need to update
to the latest kernel to benefit from them.

▶ Solution: a stable maintainers team goes through all the patches merged into
Torvald’s tree and backports the relevant ones into their stable branches for at
least a few months.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/437

Location of the stable kernel sources

▶ The stable versions of the Linux kernel, as maintained by a maintainers group
• These versions do not bring new features compared to Linus’ tree
• Only bug fixes and security fixes are pulled there
• Each version is stabilized during the development period of the next mainline kernel
• A good pick for products commercialization phase
• https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
• Certain versions will be maintained much longer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/437

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Need for long term support

▶ Issue: bug and security fixes only released for most recent kernel versions.
▶ Solution: the last release of each year is made an LTS (Long Term Support)

release, and is supposed to be supported (and receive bug and security fixes) for
up to 6 years.

Captured on https://kernel.org in Nov.
2023, following the Releases link.

▶ Example at Google: starting from Android O (2017), all new Android devices have
to run such an LTS kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/437

https://kernel.org
https://www.kernel.org/category/releases.html

Need for even longer term support

▶ You could also get long term support from a commercial embedded Linux
provider.

• Wind River Linux can be supported for up to 15 years.
• Ubuntu Core can be supported for up to 10 years.

▶ ”If you are not using a supported distribution kernel, or a stable / longterm kernel,
you have an insecure kernel” - Greg KH, 2019
Some vulnerabilities are fixed in stable without ever getting a CVE.

▶ The Civil Infrastructure Platform project is an industry / Linux Foundation effort
to support much longer (at least 10 years) selected LTS versions (currently 4.4,
4.19, 5.10 and 6.1) on selected architectures. See
https://wiki.linuxfoundation.org/civilinfrastructureplatform/start.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/437

https://wiki.linuxfoundation.org/civilinfrastructureplatform/start

Location of non-official kernel sources
▶ Many chip vendors supply their own kernel sources

• Focusing on hardware support first
• Can have a very important delta with mainline Linux
• Sometimes they break support for other platforms/devices without caring
• Useful in early phases only when mainline hasn’t caught up yet (many vendors invest

in the mainline kernel at the same time)
• Suitable for PoC, not suitable for products on the long term as usually no updates

are provided to these kernels
• Getting stuck with a deprecated system with broken software that cannot be

updated has a real cost in the end
▶ Many kernel sub-communities maintain their own kernel, with usually newer but

fewer stable features, only for cutting-edge development
• Architecture communities (ARM, MIPS, PowerPC, etc)
• Device drivers communities (I2C, SPI, USB, PCI, network, etc)
• Other communities (filesystems, memory-management, scheduling, etc)
• Not suitable to be used in products

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/437

Linux kernel size and structure
▶ Linux v5.18 sources: close to 80k files, 35M lines, 1.3GiB
▶ But a compressed Linux kernel just sizes a few megabytes.
▶ So, why are these sources so big?

Because they include numerous device drivers, network protocols, architectures,
filesystems... The core is pretty small!

▶ As of kernel version v5.18 (in percentage of total number of lines):

▶ drivers/: 61.1%
▶ arch/: 11.6%
▶ fs/: 4.4%
▶ sound/: 4.1%
▶ tools/: 3.9%
▶ net/: 3.7%

▶ include/: 3.5%
▶ Documentation/:

3.4%
▶ kernel/: 1.3%
▶ lib/: 0.7%
▶ usr/: 0.6%
▶ mm/: 0.5%

▶ scripts/, security/, crypto/,
block/, samples/, ipc/, virt/,
init/, certs/: <0.5%

▶ Build system files: Kbuild,
Kconfig, Makefile

▶ Other files: COPYING, CREDITS,
MAINTAINERS, README

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/437

https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/fs/
https://elixir.bootlin.com/linux/latest/source/sound/
https://elixir.bootlin.com/linux/latest/source/tools/
https://elixir.bootlin.com/linux/latest/source/net/
https://elixir.bootlin.com/linux/latest/source/include/
https://elixir.bootlin.com/linux/latest/source/Documentation/
https://elixir.bootlin.com/linux/latest/source/kernel/
https://elixir.bootlin.com/linux/latest/source/lib/
https://elixir.bootlin.com/linux/latest/source/usr/
https://elixir.bootlin.com/linux/latest/source/mm/
https://elixir.bootlin.com/linux/latest/source/scripts/
https://elixir.bootlin.com/linux/latest/source/security/
https://elixir.bootlin.com/linux/latest/source/crypto/
https://elixir.bootlin.com/linux/latest/source/block/
https://elixir.bootlin.com/linux/latest/source/samples/
https://elixir.bootlin.com/linux/latest/source/ipc/
https://elixir.bootlin.com/linux/latest/source/virt/
https://elixir.bootlin.com/linux/latest/source/init/
https://elixir.bootlin.com/linux/latest/source/certs/
https://elixir.bootlin.com/linux/latest/source/Kbuild
https://elixir.bootlin.com/linux/latest/source/Kconfig
https://elixir.bootlin.com/linux/latest/source/Makefile
https://elixir.bootlin.com/linux/latest/source/COPYING
https://elixir.bootlin.com/linux/latest/source/CREDITS
https://elixir.bootlin.com/linux/latest/source/MAINTAINERS
https://elixir.bootlin.com/linux/latest/source/README

Practical lab - Downloading kernel source code

▶ Clone the mainline Linux source tree with git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/437

Linux Kernel Introduction

Linux kernel source code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/437

Programming language

▶ Implemented in C like all UNIX systems
▶ A little Assembly is used too:

• CPU and machine initialization, exceptions
• Critical library routines.

▶ No C++ used, see http://vger.kernel.org/lkml/#s15-3
▶ All the code compiled with gcc

• Many gcc specific extensions used in the kernel code, any ANSI C compiler will not
compile the kernel

• See https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/C-Extensions.html

▶ A subset of the supported architectures can be built with the LLVM C compiler
(Clang) too: https://clangbuiltlinux.github.io/

▶ Rust support is currently being introduced: drivers/net/phy/ax88796b_rust.rs
is a first driver written in Rust.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/437

http://vger.kernel.org/lkml/#s15-3
https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/C-Extensions.html
https://clangbuiltlinux.github.io/
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/ax88796b_rust.rs

No C library

▶ The kernel has to be standalone and can’t use user space code.
▶ Architectural reason: user space is implemented on top of kernel services, not the

opposite.
▶ Technical reason: the kernel is on its own during the boot up phase, before it has

accessed a root filesystem.
▶ Hence, kernel code has to supply its own library implementations (string utilities,

cryptography, uncompression...)
▶ So, you can’t use standard C library functions in kernel code (printf(),

memset(), malloc(),...).
▶ Fortunately, the kernel provides similar C functions for your convenience, like

printk(), memset(), kmalloc(), ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/437

https://elixir.bootlin.com/linux/latest/ident/printk
https://elixir.bootlin.com/linux/latest/ident/memset
https://elixir.bootlin.com/linux/latest/ident/kmalloc

Portability

▶ The Linux kernel code is designed to be portable
▶ All code outside arch/ should be portable
▶ To this aim, the kernel provides macros and functions to abstract the architecture

specific details
• Endianness
• I/O memory access
• Memory barriers to provide ordering guarantees if needed
• DMA API to flush and invalidate caches if needed

▶ Never use floating point numbers in kernel code. Your code may need to run on a
low-end processor without a floating point unit.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/437

https://elixir.bootlin.com/linux/latest/source/arch/

Linux kernel to user API/ABI stability

Linux kernel to userspace API is stable
▶ Source code for userspace applications will not have to

be updated when compiling for a more recent kernel
• System calls, /proc and /sys content cannot be

removed or changed. Only new entries can be added.
Linux kernel to userspace ABI is stable
▶ Binaries are portable and can be executed on a more

recent kernel
• The way memory is accessed, the size of the variables in

memory, how structures are organized, the calling
convention, etc, are all stable over time.

☐✔ API stability is guaranteed, source code
is portable!

compatible ABI can be guaranteed,
binaries are portable

☐✔

API

ABI

Linux kernel to user

Linux kernel to user

compiled against
LSB 5.0 for x86-64

LibreOffice
Firefox
Emacs
Gimp
VLC
et al.

compiled against
LSB 5.0 for x86-64

Linux v4.14

Linux v3.8

Linux v5.19

Modified Image from Wikipedia:
https://bit.ly/2U2rdGB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/437

https://bit.ly/2U2rdGB

Linux internal API/ABI instability

Linux internal API is not stable
▶ The source code of a driver is not portable across

versions
• In-tree drivers are updated by the developer proposing

the API change: works great for mainline code
• An out-of-tree driver compiled for a given version may

no longer compile or work on a more recent one
• See process/stable-api-nonsense for reasons why

Linux internal ABI is not stable
▶ A binary module compiled for a given kernel version

cannot be used with another version
• The module loading utilities will perform this check

prior to the insertion
in Linux v5.18

☐✘

✘

API stability is not guaranteed,
source code portability is not given

no stable ABI over Linux kernel releases,
binaries are not portable

☐✘

✘

✔

API

ABI

Linux internal

Linux internal

compiled for
Linux v5.17

in Linux v5.17

in Linux v5.19

Modified Image from Wikipedia:
https://bit.ly/2U2rdGB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/437

https://www.kernel.org/doc/html/latest/process/stable-api-nonsense.html
https://bit.ly/2U2rdGB

Kernel memory constraints

▶ No memory protection
▶ The kernel doesn’t try to recover from attemps to access illegal memory locations.

It just dumps oops messages on the system console.
▶ Fixed size stack (8 or 4 KB). Unlike in user space, no mechanism was

implemented to make it grow. Don’t use recursion!
▶ Swapping is not implemented for kernel memory either

(except tmpfs which lives completely in the page cache and on swap)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/437

Linux kernel licensing constraints

▶ The Linux kernel is licensed under the GNU General Public License version 2
• This license gives you the right to use, study, modify and share the software freely

▶ However, when the software is redistributed, either modified or unmodified, the
GPL requires that you redistribute the software under the same license, with the
source code

• If modifications are made to the Linux kernel (for example to adapt it to your
hardware), it is a derivative work of the kernel, and therefore must be released under
GPLv2.

▶ The GPL license has been successfully enforced in courts:
https://en.wikipedia.org/wiki/Gpl-violations.org#Notable_victories

▶ However, you’re only required to do so
• At the time the device starts to be distributed
• To your customers, not to the entire world

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/437

https://en.wikipedia.org/wiki/Gpl-violations.org#Notable_victories

Proprietary code and the kernel

▶ It is illegal to distribute a binary kernel that includes statically compiled
proprietary drivers

▶ The kernel modules are a gray area: unclear if they are legal or not
• The general opinion of the kernel community is that proprietary modules are bad:

process/kernel-driver-statement
• From a legal point of view, each driver is probably a different case:

Are they derived works of the kernel?
Are they designed to be used with another operating system?

▶ Is it really useful to keep drivers secret anyway?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/437

https://www.kernel.org/doc/html/latest/process/kernel-driver-statement.html

Abusing the kernel licensing constraints

▶ There are some examples of
proprietary drivers

• Nvidia uses a wrapper between their
drivers and the kernel

• They claim the drivers could be used
with a different OS with another
wrapper

• Unclear whether it makes it legal or
not

▶ The current trend is to hide the logic
in the firmware or in userspace. The
GPL kernel driver is almost empty and
either:

• Blindly writes an incoming flow of
bytes in the hardware

• Exposes a huge MMIO region to
userspace through mmap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/437

Advantages of GPL drivers

▶ You don’t have to write your driver from scratch. You can reuse code from similar
free software drivers.

▶ Your drivers can be freely and easily shipped by others (for example by Linux
distributions or embedded Linux build systems).

▶ Legal certainty, you are sure that a GPL driver is fine from a legal point of view.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/437

Advantages of mainlining your kernel drivers

▶ The community, reviewers and maintainers will review your code before accepting
it, offering you the opportunity to enhance it and understand better the internal
APIs.

▶ Once accepted, you will get cost-free bug and security fixes, support for new
features, and general improvements.

▶ Your work will automatically follow the API changes.
▶ Accessing your code will be much easier for users.
▶ Your code will remain valid no matter the kernel version.

This will for sure reduce your maintenance and support work

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/437

User space device drivers 1/2
▶ The kernel provides some mechanisms to access hardware from userspace:

• USB devices with libusb, https://libusb.info/
• SPI devices with spidev, spi/spidev
• I2C devices with i2cdev, i2c/dev-interface
• GPIOs with libgpiod, https://libgpiod.readthedocs.io
• Memory-mapped devices with UIO, including interrupt handling,

driver-api/uio-howto

▶ These solutions can only be used if:
• There is no need to leverage an existing kernel subsystem such as the networking

stack or filesystems.
• There is no need for the kernel to act as a “multiplexer” for the device: only one

application accesses the device.
▶ Certain classes of devices like printers and scanners do not have any kernel

support, they have always been handled in user space for historical reasons.
▶ Otherwise this is not how the system should be architectured. Kernel drivers

should always be preferred!
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/437

https://libusb.info/
https://www.kernel.org/doc/html/latest/spi/spidev.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://libgpiod.readthedocs.io
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html

User space device drivers 2/2

▶ Advantages
• No need for kernel coding skills.
• Drivers can be written in any language, even Perl!
• Drivers can be kept proprietary.
• Driver code can be killed and debugged. Cannot crash the kernel.
• Can use floating-point computation.
• Potentially higher performance, especially for memory-mapped devices, thanks to the

avoidance of system calls.
▶ Drawbacks

• The kernel has no longer access to the device.
• None of the standard applications will be able to use it.
• Cannot use any hardware abstraction or software helpers from the kernel
• Need to adapt applications when changing the hardware.
• Less straightforward to handle interrupts: increased latency.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/437

Practical lab - Kernel Source Code - Exploring

▶ Explore kernel sources manually
▶ Use automated tools to explore the source code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/437

Linux Kernel Usage

Linux Kernel Usage

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/437

Linux Kernel Usage

Kernel configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/437

Kernel configuration

▶ The kernel contains thousands of device drivers, filesystem drivers, network
protocols and other configurable items

▶ Thousands of options are available, that are used to selectively compile parts of
the kernel source code

▶ The kernel configuration is the process of defining the set of options with which
you want your kernel to be compiled

▶ The set of options depends
• On the target architecture and on your hardware (for device drivers, etc.)
• On the capabilities you would like to give to your kernel (network capabilities,

filesystems, real-time, etc.). Such generic options are available in all architectures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/437

Kernel configuration and build system

▶ The kernel configuration and build system is based on multiple Makefiles
▶ One only interacts with the main Makefile, present at the top directory of the

kernel source tree
▶ Interaction takes place

• using the make tool, which parses the Makefile
• through various targets, defining which action should be done (configuration,

compilation, installation, etc.).
• Run make help to see all available targets.

▶ Example
• cd linux/
• make <target>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/437

https://elixir.bootlin.com/linux/latest/source/Makefile

Specifying the target architecture

First, specify the architecture for the kernel to build
▶ Set ARCH to the name of a directory under arch/:

ARCH=arm or ARCH=arm64 or ARCH=riscv, etc
▶ By default, the kernel build system assumes that the kernel is configured and built

for the host architecture (x86 in our case, native kernel compiling)
▶ The kernel build system will use this setting to:

• Use the configuration options for the target architecture.
• Compile the kernel with source code and headers for the target architecture.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/437

https://elixir.bootlin.com/linux/latest/source/arch/

Choosing a compiler

The compiler invoked by the kernel Makefile is $(CROSS_COMPILE)gcc

▶ Specifying the compiler is already needed at configuration time, as some kernel
configuration options depend on the capabilities of the compiler.

▶ When compiling natively
• Leave CROSS_COMPILE undefined and the kernel will be natively compiled for the host

architecture using gcc.
▶ When using a cross-compiler

• Specify the prefix of your cross-compiler executable, for example for
arm-linux-gnueabi-gcc:
CROSS_COMPILE=arm-linux-gnueabi-

Set LLVM to 1 to compile your kernel with Clang.
See our LLVM tools for the Linux kernel presentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/437

https://bootlin.com/pub/conferences/2022/lee/opdenacker-llvm-tools-for-linux-kernel/opdenacker-llvm-tools-for-linux-kernel.pdf

Specifying ARCH and CROSS_COMPILE

There are actually two ways of defining ARCH and CROSS_COMPILE:
▶ Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when you run any make
command, causing your build and configuration to be screwed up.

▶ Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal. You could put these
settings in a file that you source every time you start working on the project, see
also the https://direnv.net/ project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/437

https://direnv.net/

Initial configuration

Difficult to find which kernel configuration will work with your hardware and root
filesystem. Start with one that works!
▶ Desktop or server case:

• Advisable to start with the configuration of your running kernel:
cp /boot/config-`uname -r` .config

▶ Embedded platform case:
• Default configurations stored in-tree as minimal configuration files (only listing

settings that are different with the defaults) in arch/<arch>/configs/
• make help will list the available configurations for your platform
• To load a default configuration file, just run make foo_defconfig (will erase your

current .config!)
On ARM 32-bit, there is usually one default configuration per CPU family
On ARM 64-bit, there is only one big default configuration to customize

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/437

Create your own default configuration

▶ Use a tool such as make menuconfig to make changes to the configuration
▶ Saving your changes will overwrite your .config (not tracked by Git)
▶ When happy with it, create your own default configuration file:

• Create a minimal configuration (non-default settings) file:
make savedefconfig

• Save this default configuration in the right directory:
mv defconfig arch/<arch>/configs/myown_defconfig

• Add this file to Git.
▶ This way, you can share a reference configuration inside the kernel sources and

other developers can now get the same .config as you by running
make myown_defconfig

▶ When you use an embedded build system (Buildroot, OpenEmbedded) use its
specific commands. E.g. make linux-menuconfig and
make linux-update-defconfig in Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/437

Built-in or module?

▶ The kernel image is a single file, resulting from the linking of all object files that
correspond to features enabled in the configuration

• This is the file that gets loaded in memory by the bootloader
• All built-in features are therefore available as soon as the kernel starts, at a time

where no filesystem exists
▶ Some features (device drivers, filesystems, etc.) can however be compiled as

modules
• These are plugins that can be loaded/unloaded dynamically to add/remove features

to the kernel
• Each module is stored as a separate file in the filesystem, and therefore access

to a filesystem is mandatory to use modules
• This is not possible in the early boot procedure of the kernel, because no filesystem

is available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/437

Kernel option types

There are different types of options, defined in Kconfig files:
▶ bool options, they are either

• true (to include the feature in the kernel) or
• false (to exclude the feature from the kernel)

▶ tristate options, they are either
• true (to include the feature in the kernel image) or
• module (to include the feature as a kernel module) or
• false (to exclude the feature)

▶ int options, to specify integer values
▶ hex options, to specify hexadecimal values

Example: CONFIG_PAGE_OFFSET=0xC0000000

▶ string options, to specify string values
Example: CONFIG_LOCALVERSION=-no-network
Useful to distinguish between two kernels built from different options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PAGE_OFFSET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOCALVERSION

Kernel option dependencies
Enabling a network driver requires the network stack to be enabled, therefore
configuration symbols have two ways to express dependencies:
▶ depends on dependency:

config B
depends on A

• B is not visible until A is
enabled

• Works well for dependency
chains

▶ select dependency:
config A

select B

• When A is enabled, B is enabled too (and
cannot be disabled manually)

• Should preferably not select symbols with
depends on dependencies

• Used to declare hardware features or select
libraries

config SPI_ATH79
tristate "Atheros AR71XX/AR724X/AR913X SPI controller driver"
depends on ATH79 || COMPILE_TEST
select SPI_BITBANG
help
This enables support for the SPI controller present on the
Atheros AR71XX/AR724X/AR913X SoCs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/437

Kernel configuration details

▶ The configuration is stored in the .config file at
the root of kernel sources

• Simple text file, CONFIG_PARAM=value
• Options are grouped by sections and are prefixed

with CONFIG_
• ”No” value is encoded as

CONFIG_FOO is not set
• Included by the top-level kernel Makefile
• Typically not edited by hand because of the

dependencies

#
CD-ROM/DVD Filesystems
#
CONFIG_ISO9660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
end of CD-ROM/DVD Filesystems

#
DOS/FAT/EXFAT/NT Filesystems
#
CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_VFAT_FS is not set
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_EXFAT_FS is not set

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/437

xconfig

make xconfig

▶ A graphical interface to configure the
kernel.

▶ File browser: easy to load
configuration files

▶ Search interface to look for
parameters ([Ctrl] + [f])

▶ Required Debian/Ubuntu packages:
qtbase5-dev on Ubuntu 22.04

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/437

menuconfig

make menuconfig

▶ Useful when no graphics are available.
Very efficient interface.

▶ Same interface found in other tools:
BusyBox, Buildroot...

▶ Convenient number shortcuts to jump
directly to search results.

▶ Required Debian/Ubuntu packages:
libncurses-dev

▶ Alternative: make nconfig
(now also has the number shortcuts)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/437

Kernel configuration options

You can switch from one tool to another, they all load/save the same .config file,
and show the same set of options
Compiled as a module:

Additional driver options:

Statically built:

CONFIG_ISO9660_FS=m

CONFIG_JOLIET=y

CONFIG_ZISOFS=y

CONFIG_UDF_FS=y

Values in resulting .config file Parameter values as displayed by xconfig Parameter values as displayed by menuconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/437

make oldconfig

make oldconfig

▶ Useful to upgrade a .config file from an earlier kernel release
▶ Asks for values for new parameters.
▶ ... unlike make menuconfig and make xconfig which silently set default values

for new parameters.
If you edit a .config file by hand, it’s useful to run make oldconfig afterwards, to set
values to new parameters that could have appeared because of dependency changes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/437

Undoing configuration changes

A frequent problem:
▶ After changing several kernel configuration settings, your kernel no longer works.
▶ If you don’t remember all the changes you made, you can get back to your

previous configuration:
$ cp .config.old .config

▶ All the configuration tools keep this .config.old backup copy.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/437

Linux Kernel Usage

Compiling and installing the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/437

Kernel compilation

make

▶ Only works from the top kernel source directory
▶ Should not be performed as a privileged user
▶ Run several jobs in parallel. Our advice: $(nproc) to

fully load the CPU and I/Os at all times.
Example: make -j20

▶ To recompile faster (7x according to some benchmarks),
use the ccache compiler cache:
export CROSS_COMPILE="ccache arm-linux-"

Command: make

Total time: 129 s

Tests on Linux 5.11 on arm

 configuration

showing the load on 4 threads / 2 CPUs

Command: make -j8

Total time: 67 s

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/437

Kernel compilation results

▶ arch/<arch>/boot/Image, uncompressed kernel image that can be booted
▶ arch/<arch>/boot/*Image*, compressed kernel images that can also be booted

• bzImage for x86, zImage for ARM, Image.gz for RISC-V, vmlinux.bin.gz for ARC,
etc.

▶ arch/<arch>/boot/dts/<vendor>/*.dtb, compiled Device Tree Blobs
▶ All kernel modules, spread over the kernel source tree, as .ko (Kernel Object) files.
▶ vmlinux, a raw uncompressed kernel image in the ELF format, useful for

debugging purposes but generally not used for booting purposes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/437

Kernel installation: native case

▶ sudo make install
• Does the installation for the host system by default

▶ Installs
• /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in arch/<arch>/boot
• /boot/System.map-<version>

Stores kernel symbol addresses for debugging purposes (obsolete: such information is
usually stored in the kernel itself)

• /boot/config-<version>
Kernel configuration for this version

▶ In GNU/Linux distributions, typically re-runs the bootloader configuration utility
to make the new kernel available at the next boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/437

Kernel installation: embedded case

▶ make install is rarely used in embedded development, as the kernel image is a
single file, easy to handle.

▶ Another reason is that there is no standard way to deploy and use the kernel
image.

▶ Therefore making the kernel image available to the target is usually manual or
done through scripts in build systems.

▶ It is however possible to customize the make install behavior in
arch/<arch>/boot/install.sh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/437

Module installation: native case

▶ sudo make modules_install
• Does the installation for the host system by default, so needs to be run as root

▶ Installs all modules in /lib/modules/<version>/
• kernel/

Module .ko (Kernel Object) files, in the same directory structure as in the sources.
• modules.alias, modules.alias.bin

Aliases for module loading utilities , see next slide
• modules.dep, modules.dep.bin

Module dependencies. Kernel modules can depend on other modules, based on the
symbols (functions and data structures) they use.

• modules.symbols, modules.symbols.bin
Tells which module a given symbol belongs to (related to module dependencies).

• modules.builtin
List of built-in modules of the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/437

Module alias: modules.alias

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/437

Module installation: embedded case

▶ In embedded development, you can’t directly use make modules_install as it
would install target modules in /lib/modules on the host!

▶ The INSTALL_MOD_PATH variable is needed to generate the module related files
and install the modules in the target root filesystem instead of your host root
filesystem (no need to be root):
make INSTALL_MOD_PATH=<dir>/ modules_install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/437

Kernel cleanup targets

▶ From make help:

Cleaning targets:
clean - Remove most generated files but keep the config and

enough build support to build external modules
mrproper - Remove all generated files + config + various backup files
distclean - mrproper + remove editor backup and patch files

▶ If you are in a git tree, remove all files not tracked (and ignored) by git:
git clean -fdx

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/437

Kernel building overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/437

Linux Kernel Usage

Booting the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/437

Hardware description

▶ Many embedded architectures have a lot of non-discoverable hardware (serial,
Ethernet, I2C, Nand flash, USB controllers...)

▶ This hardware needs to be described and passed to the Linux kernel.
▶ The bootloader/firmware is expected to provide this description when starting the

kernel:
• On x86: using ACPI tables
• On most embedded devices: using an OpenFirmware Device Tree (DT)

▶ This way, a kernel supporting different SoCs knows which SoC and device
initialization hooks to run on the current board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/437

Booting with U-Boot

▶ On ARM32, U-Boot can boot zImage (bootz command)
▶ On ARM64 or RISC-V, it boots the Image file (booti command)
▶ In addition to the kernel image, U-Boot should also pass a DTB to the kernel.
▶ The typical boot process is therefore:

1. Load zImage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with boot[z|i] X - Y

The - in the middle indicates no initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/437

Kernel command line

▶ In addition to the compile time configuration, the kernel behavior can be adjusted
with no recompilation using the kernel command line

▶ The kernel command line is a string that defines various arguments to the kernel
• It is very important for system configuration
• root= for the root filesystem (covered later)
• console= for the destination of kernel messages
• Example: console=ttyS0 root=/dev/mmcblk0p2 rootwait
• Many more exist. The most important ones are documented in

admin-guide/kernel-parameters in kernel documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/437

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Passing the kernel command line

▶ U-Boot carries the Linux kernel command line string in
its bootargs environment variable

▶ Right before starting the kernel, it will store the
contents of bootargs in the chosen section of the
Device Tree

▶ The kernel will behave differently depending on its
configuration:

• If CONFIG_CMDLINE_FROM_BOOTLOADER is set:
The kernel will use only the string from the bootloader

• If CONFIG_CMDLINE_FORCE is set:
The kernel will only use the string received at
configuration time in CONFIG_CMDLINE

• If CONFIG_CMDLINE_EXTEND is set:
The kernel will concatenate both strings

See the ”Understanding U-Boot Falcon
Mode” presentation from Michael
Opdenacker, for details about how U-Boot
boots Linux.

Slides: https:
//bootlin.com/pub/conferences/2021/lee/
Video: https:
//www.youtube.com/watch?v=LFe3x2QMhSo

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FROM_BOOTLOADER
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FORCE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_EXTEND
https://bootlin.com/pub/conferences/2021/lee/
https://bootlin.com/pub/conferences/2021/lee/
https://www.youtube.com/watch?v=LFe3x2QMhSo
https://www.youtube.com/watch?v=LFe3x2QMhSo

Kernel log
▶ The kernel keeps its messages in a circular buffer in memory

• The size is configurable using CONFIG_LOG_BUF_SHIFT

▶ When a module is loaded, related information is available in the kernel log.
▶ Kernel log messages are available through the dmesg command (diagnostic

message)
▶ Kernel log messages are also displayed on the console pointed by the console=

kernel command line argument
• Console messages can be filtered by level using the loglevel parameter:

loglevel= allows to filter messages displayed on the console based on priority
ignore_loglevel (same as loglevel=8) will lead to all messages being printed
quiet (same as loglevel=0) prevents any message from being displayed on the
console

• Example: console=ttyS0 root=/dev/mmcblk0p2 loglevel=5

▶ It is possible to write to the kernel log from user space:
echo "<n>Debug info" > /dev/kmsg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOG_BUF_SHIFT

Practical lab - Kernel compiling and booting

1st lab: board and bootloader setup:
▶ Prepare the board and access its serial port
▶ Configure its bootloader to use TFTP

2nd lab: kernel compiling and booting:
▶ Set up a cross-compiling environment
▶ Cross-compile a kernel for an ARM target

platform
▶ Boot this kernel from a directory on your

workstation, accessed by the board through
NFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/437

Linux Kernel Usage

Using kernel modules

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/437

Advantages of modules

▶ Modules make it easy to develop drivers without
rebooting: load, test, unload, rebuild, load...

▶ Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

▶ Also useful to reduce boot time: you don’t spend time
initializing devices and kernel features that you only
need later.

▶ Caution: once loaded, have full control and privileges in
the system. No particular protection. That’s why only
the root user can load and unload modules.

▶ To increase security, possibility to allow only signed
modules, or to disable module support entirely.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/437

Module utilities: extracting information

<module_name>: name of the module file without the trailing .ko

▶ modinfo <module_name> (for modules in /lib/modules)
modinfo <module_path>.ko
Gets information about a module without loading it: parameters, license,
description and dependencies.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/437

Module utilities: loading

▶ sudo insmod <module_path>.ko
Tries to load the given module. The full path to the module object file must be
given.

▶ sudo modprobe <top_module_name>
Most common usage of modprobe: tries to load all the dependencies of the given
top module, and then this module. Lots of other options are available. modprobe
automatically looks in /lib/modules/<version>/ for the object file
corresponding to the given module name.

▶ lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/437

Understanding module loading issues

▶ When loading a module fails, insmod often doesn’t give you enough details!
▶ Details are often available in the kernel log.
▶ Example:

$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg
[17549774.552000] Failed to register handler for irq channel 2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/437

Module utilities: removals

▶ sudo rmmod <module_name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for example, no more
processes opening a device file)

▶ sudo modprobe -r <top_module_name>
Tries to remove the given top module and all its no longer needed dependencies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/437

Passing parameters to modules

▶ Find available parameters:
modinfo usb-storage

▶ Through insmod:
sudo insmod ./usb-storage.ko delay_use=0

▶ Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in /etc/modprobe.d/:
options usb-storage delay_use=0

▶ Through the kernel command line, when the module is built statically into the
kernel:
usb-storage.delay_use=0

• usb-storage is the module name
• delay_use is the module parameter name. It specifies a delay before accessing a

USB storage device (useful for rotating devices).
• 0 is the module parameter value

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/437

Check module parameter values

How to find/edit the current values for the parameters of a loaded module?
▶ Check /sys/module/<name>/parameters.
▶ There is one file per parameter, containing the parameter value.
▶ Also possible to change parameter values if these files have write permissions

(depends on the module code).
▶ Example:

echo 0 > /sys/module/usb_storage/parameters/delay_use

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/437

Developing kernel modules

Developing kernel
modules

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/437

Hello module 1/2
// SPDX-License-Identifier: GPL-2.0
/* hello.c */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int __init hello_init(void)
{

pr_alert("Good morrow to this fair assembly.\n");
return 0;

}

static void __exit hello_exit(void)
{

pr_alert("Alas, poor world, what treasure hast thou lost!\n");
}

module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Greeting module");
MODULE_AUTHOR("William Shakespeare");

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/437

Hello module 2/2

▶ Code marked as __init:
• Removed after initialization (static kernel or module.)
• See how init memory is reclaimed when the kernel finishes booting:

[2.689854] VFS: Mounted root (nfs filesystem) on device 0:15.
[2.698796] devtmpfs: mounted
[2.704277] Freeing unused kernel memory: 1024K
[2.710136] Run /sbin/init as init process

▶ Code marked as __exit:
• Discarded when module compiled statically into the kernel, or when module

unloading support is not enabled.
▶ Code of this example module available on

https://raw.githubusercontent.com/bootlin/training-materials/master/code/hello/hello.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/437

https://elixir.bootlin.com/linux/latest/ident/__init
https://elixir.bootlin.com/linux/latest/ident/__exit
https://raw.githubusercontent.com/bootlin/training-materials/master/code/hello/hello.c

Hello module explanations

▶ Headers specific to the Linux kernel: linux/xxx.h
• No access to the usual C library, we’re doing kernel programming

▶ An initialization function
• Called when the module is loaded, returns an error code (0 on success, negative

value on failure)
• Declared by the module_init() macro: the name of the function doesn’t matter,

even though <modulename>_init() is a convention.
▶ A cleanup function

• Called when the module is unloaded
• Declared by the module_exit() macro.

▶ Metadata information declared using MODULE_LICENSE(), MODULE_DESCRIPTION()
and MODULE_AUTHOR()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/437

https://elixir.bootlin.com/linux/latest/ident/module_init
https://elixir.bootlin.com/linux/latest/ident/module_exit
https://elixir.bootlin.com/linux/latest/ident/MODULE_LICENSE
https://elixir.bootlin.com/linux/latest/ident/MODULE_DESCRIPTION
https://elixir.bootlin.com/linux/latest/ident/MODULE_AUTHOR

Symbols exported to modules 1/2

▶ From a kernel module, only a limited number of kernel functions can be called
▶ Functions and variables have to be explicitly exported by the kernel to be visible

to a kernel module
▶ Two macros are used in the kernel to export functions and variables:

• EXPORT_SYMBOL(symbolname), which exports a function or variable to all modules
• EXPORT_SYMBOL_GPL(symbolname), which exports a function or variable only to GPL

modules
• Linux 5.3: contains the same number of symbols with EXPORT_SYMBOL() and

symbols with EXPORT_SYMBOL_GPL()

▶ A normal driver should not need any non-exported function.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/437

https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL
https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL_GPL

Symbols exported to modules 2/2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/437

Module license

▶ Several usages
• Used to restrict the kernel functions that the module can use if it isn’t a GPL

licensed module
Difference between EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL()

• Used by kernel developers to identify issues coming from proprietary drivers, which
they can’t do anything about (“Tainted” kernel notice in kernel crashes and oopses).

• See admin-guide/tainted-kernels for details about tainted flag values.
• Useful for users to check that their system is 100% free (for the kernel, check

/proc/sys/kernel/tainted; run vrms to check installed packages)
▶ Values

• GPL compatible (see include/linux/license.h: GPL, GPL v2,
GPL and additional rights, Dual MIT/GPL, Dual BSD/GPL, Dual MPL/GPL)

• Proprietary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/437

https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL
https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL_GPL
https://www.kernel.org/doc/html/latest/admin-guide/tainted-kernels.html
https://elixir.bootlin.com/linux/latest/source/include/linux/license.h

Compiling a module

Two solutions
▶ Out of tree, when the code is outside of the kernel source tree, in a different

directory
• Not integrated into the kernel configuration/compilation process
• Needs to be built separately
• The driver cannot be built statically, only as a module

▶ Inside the kernel tree
• Well integrated into the kernel configuration/compilation process
• The driver can be built statically or as a module

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/437

Compiling an out-of-tree module 1/2

▶ The below Makefile should be reusable for any single-file out-of-tree Linux
module

▶ The source file is hello.c

▶ Just run make to build the hello.ko file

ifneq ($(KERNELRELEASE),)
obj-m := hello.o
else
KDIR := /path/to/kernel/sources

all:
<tab>$(MAKE) -C $(KDIR) M=$$PWD
endif

▶ KDIR: kernel source or headers directory (see next slides)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/437

Compiling an out-of-tree module 2/2

▶ The module Makefile is interpreted with KERNELRELEASE undefined, so it calls
the kernel Makefile, passing the module directory in the M variable

▶ The kernel Makefile knows how to compile a module, and thanks to the M
variable, knows where the Makefile for our module is. This module Makefile is
then interpreted with KERNELRELEASE defined, so the kernel sees the obj-m
definition.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/437

Modules and kernel version

▶ To be compiled, a kernel module needs access to kernel headers, containing the
definitions of functions, types and constants.

▶ Two solutions
• Full kernel sources (configured + make modules_prepare)
• Only kernel headers (linux-headers-* packages in Debian/Ubuntu distributions, or

directory created by make headers_install).
▶ The sources or headers must be configured (.config file)

• Many macros or functions depend on the configuration
▶ You also need the kernel Makefile, the scripts/ directory, and a few others.
▶ A kernel module compiled against version X of kernel headers will not load in

kernel version Y
• modprobe / insmod will say Invalid module format

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/437

https://elixir.bootlin.com/linux/latest/source/Makefile
https://elixir.bootlin.com/linux/latest/source/scripts/

New driver in kernel sources 1/2

▶ To add a new driver to the kernel sources:
• Add your new source file to the appropriate source directory. Example:

drivers/usb/serial/navman.c
• Single file drivers in the common case, even if the file is several thousand lines of

code big. Only really big drivers are split in several files or have their own directory.
• Describe the configuration interface for your new driver by adding the following lines

to the Kconfig file in this directory:

config USB_SERIAL_NAVMAN
tristate "USB Navman GPS device"
depends on USB_SERIAL
help
To compile this driver as a module, choose M
here: the module will be called navman.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/437

https://elixir.bootlin.com/linux/latest/source/drivers/usb/serial/navman.c

New driver in kernel sources 2/2

▶ Add a line in the Makefile file based on the Kconfig setting:
obj-$(CONFIG_USB_SERIAL_NAVMAN) += navman.o

▶ It tells the kernel build system to build navman.c when the USB_SERIAL_NAVMAN
option is enabled. It works both if compiled statically or as a module.

• Run make xconfig and see your new options!
• Run make and your new files are compiled!
• See kbuild/ for details and more elaborate examples like drivers with several source

files, or drivers in their own subdirectory, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/437

https://www.kernel.org/doc/html/latest/kbuild/

Hello module with parameters 1/2

// SPDX-License-Identifier: GPL-2.0
/* hello_param.c */
#include <linux/init.h>
#include <linux/module.h>

MODULE_LICENSE("GPL");

static char *whom = "world";
module_param(whom, charp, 0644);
MODULE_PARM_DESC(whom, "Recipient of the hello message");

static int howmany = 1;
module_param(howmany, int, 0644);
MODULE_PARM_DESC(howmany, "Number of greetings");

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/437

Hello module with parameters 2/2
static int __init hello_init(void)
{

int i;

for (i = 0; i < howmany; i++)
pr_alert("(%d) Hello, %s\n", i, whom);

return 0;
}

static void __exit hello_exit(void)
{

pr_alert("Goodbye, cruel %s\n", whom);
}

module_init(hello_init);
module_exit(hello_exit);

Thanks to Jonathan Corbet for the examples
Source code available on: https://github.com/bootlin/training-materials/blob/master/code/hello-param/hello_param.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/437

https://github.com/bootlin/training-materials/blob/master/code/hello-param/hello_param.c

Declaring a module parameter

module_param(
name, /* name of an already defined variable */
type, /* standard types (different from C types) are:

* byte, short, ushort, int, uint, long, ulong
* charp: a character pointer
* bool: a bool, values 0/1, y/n, Y/N.
* invbool: the above, only sense-reversed (N = true). */

perm /* for /sys/module/<module_name>/parameters/<param>,
* 0: no such module parameter value file */

);

/* Example: drivers/block/loop.c */
static int max_loop;
module_param(max_loop, int, 0444);
MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");

Modules parameter arrays are also possible with module_param_array().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/437

https://elixir.bootlin.com/linux/latest/ident/module_param_array

Practical lab - Writing modules

▶ Create, compile and load your first module
▶ Add module parameters
▶ Access kernel internals from your module

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/437

Describing hardware devices

Describing hardware
devices

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/437

Describing hardware devices

Discoverable hardware: USB and PCI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/437

Discoverable hardware

▶ Some busses have built-in hardware discoverability mechanisms
▶ Most common busses: USB and PCI
▶ Hardware devices can be enumerated, and their characteristics retrieved with just

a driver or the bus controller
▶ Useful Linux commands

• lsusb, lists all USB devices detected
• lspci, lists all PCI devices detected
• A detected device does not mean it has a kernel driver associated to it!

▶ Association with kernel drivers done based on product ID/vendor ID, or some
other characteristics of the device: device class, device sub-class, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/437

Describing hardware devices

Describing non-discoverable hardware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/437

Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables
3. Using a Device Tree

▶ Using compiled data structures, typically in C
▶ How it was done on most embedded platforms in Linux,

U-Boot.
▶ Considered not maintainable/sustainable on ARM32,

which motivated the move to another solution.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/437

Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables

3. Using a Device Tree

▶ On x86 systems, but also on a subset of ARM64
platforms

▶ Tables provided by the firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/437

Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables

3. Using a Device Tree

▶ Originates from OpenFirmware, defined by Sun, used
on SPARC and PowerPC

• That’s why many Linux/U-Boot functions related to
DT have a of_ prefix

▶ Now used by most embedded-oriented CPU
architectures that run Linux: ARC, ARM64, RISC-V,
ARM32, PowerPC, Xtensa, MIPS, etc.

▶ Writing/tweaking a DT is necessary when porting Linux
to a new board, or when connecting additional
peripherals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/437

Device Tree: from source to blob

▶ A tree data structure describing the hardware is written
by a developer in a Device Tree Source file, .dts

▶ Processed by the Device Tree Compiler, dtc
▶ Produces a more efficient representation: Device Tree

Blob, .dtb
▶ Additional C preprocessor pass
▶ .dtb → accurately describes the hardware platform in

an OS-agnostic way.
▶ .dtb ≈ few dozens of kilobytes
▶ DTB also called FDT, Flattened Device Tree, once

loaded into memory.
• fdt command in U-Boot
• fdt_ APIs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/437

dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/437

dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/437

dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/437

Where are Device Tree Sources located?

▶ Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects

• Often discussed, never done
▶ In practice, the Linux kernel sources can be considered as the canonical location

for Device Tree Source files
• arch/<ARCH>/boot/dts/<vendor>/
• arch/arm/boot/dts (on ARM 32 architecture before Linux 6.5)
• ≈ 4500 Device Tree Source files (.dts and .dtsi) in Linux as of 6.0.

▶ Duplicated/synced in various projects
• U-Boot, Barebox, TF-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/437

Device Tree base syntax

▶ Tree of nodes
▶ Nodes with properties
▶ Node ≈ a device or IP block
▶ Properties ≈ device characteristics
▶ Notion of cells in property values
▶ Notion of phandle to point to other

nodes
▶ dtc only does syntax checking, no

semantic validation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/437

DT overall structure: simplified example

/ {
#address-cells = <1>;
#size-cells = <1>;
model = "TI AM335x BeagleBone Black";
compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";

cpus { ... };
memory@80000000 { ... };
chosen { ... };
ocp {

intc: interrupt-controller@48200000 { ... };
usb0: usb@47401300 { ... };
l4_per: interconnect@44c00000 {
i2c0: i2c@40012000 { ... };

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/437

DT overall structure: simplified example

/ {
cpus {

#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
compatible = "arm,cortex-a8";
enable-method = "ti,am3352";
device_type = "cpu";
reg = <0>;

};
};

memory@0x80000000 {
device_type = "memory";
reg = <0x80000000 0x10000000>; /* 256 MB */

};

chosen {
bootargs = "";
stdout-path = &uart0;

};

ocp { ... };
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/437

DT overall structure: simplified example

/ {
cpus { ... };
memory@0x80000000 { ... };
chosen { ... };
ocp {

intc: interrupt-controller@48200000 {
compatible = "ti,am33xx-intc";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x48200000 0x1000>;

};

usb0: usb@47401300 {
compatible = "ti,musb-am33xx";
reg = <0x1400 0x400>, <0x1000 0x200>;
reg-names = "mc", "control";
interrupts = <18>;
dr_mode = "otg";
dmas = <&cppi41dma 0 0 &cppi41dma 1 0 ...>;
status = "okay";

};

l4_per: interconnect@44c00000 {
i2c0: i2c@40012000 { ... };

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/437

DT overall structure: simplified example

/ {
cpus { ... };
memory@0x80000000 { ... };
chosen { ... };

ocp {
compatible = "simple-pm-bus";
clocks = <&l3_clkctrl AM3_L3_L3_MAIN_CLKCTRL 0>;
clock-names = "fck";
#address-cells = <1>;
#size-cells = <1>;

intc: interrupt-controller@48200000 { ... };
usb0: usb@47401300 { ... };

l4_per: interconnect@44c00000 {
compatible = "ti,am33xx-l4-wkup", "simple-pm-bus";
reg = <0x44c00000 0x800>, <0x44c00800 0x800>,

<0x44c01000 0x400>, <0x44c01400 0x400>;
reg-names = "ap", "la", "ia0", "ia1";
#address-cells = <1>;
#size-cells = <1>;

i2c0: i2c@40012000 { ... };
};

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/437

DT overall structure: simplified example

/ {
cpus { ... };
memory@0x80000000 { ... };
chosen { ... };
ocp {

intc: interrupt-controller@48200000 { ... };
usb0: usb@47401300 { ... };
l4_per: interconnect@44c00000 {

i2c0: i2c@40012000 {
compatible = "ti,omap4-i2c";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x0 0x1000>;
interrupts = <70>;
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&i2c0_pins>;
clock-frequency = <400000>;

baseboard_eeprom: eeprom@50 {
compatible = "atmel,24c256";
reg = <0x50>;

};
};

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/437

Device Tree inheritance

▶ Device Tree files are not monolithic, they can be split in several files, including
each other.

▶ .dtsi files are included files, while .dts files are final Device Trees
• Only .dts files are accepted as input to dtc

▶ Typically, .dtsi will contain
• definitions of SoC-level information
• definitions common to several boards

▶ The .dts file contains the board-level information
▶ The inclusion works by overlaying the tree of the including file over the tree of

the included file, according to the order of the #include directives.
▶ Allows an including file to override values specified by an included file.
▶ Uses the C pre-processor #include directive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/437

Device Tree inheritance example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/437

Inheritance and labels

Doing:
soc.dtsi
/ {
ocp {

uart0: serial@0 {
compatible = "ti,am3352-uart", "ti,omap3-uart";
reg = <0x0 0x1000>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

/ {
ocp {

serial@0 {
status = "okay";

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/437

Inheritance and labels

Doing:
soc.dtsi
/ {
ocp {

uart0: serial@0 {
compatible = "ti,am3352-uart", "ti,omap3-uart";
reg = <0x0 0x1000>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

/ {
ocp {

serial@0 {
status = "okay";

};
};

};

Is exactly equivalent to:
soc.dtsi
/ {
ocp {
uart0: serial@0 {
compatible = "ti,am3352-uart", "ti,omap3-uart";
reg = <0x0 0x1000>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

&uart0 {
status = "okay";

};

→ this solution is now often preferred

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/437

DT inheritance in Bone Black support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/437

Device Tree design principles

▶ Describe hardware (how the hardware is), not configuration (how I choose to
use the hardware)

▶ OS-agnostic
• For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or

Linux
• There should be no need to change the Device Tree when updating the OS

▶ Describe integration of hardware components, not the internals of hardware
components

• The details of how a specific device/IP block is working is handled by code in device
drivers

• The Device Tree describes how the device/IP block is connected/integrated with the
rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.

▶ Like all beautiful design principles, these principles are sometimes violated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/437

The properties
Device tree properties can:
▶ Be generic and apply to most nodes

• Their meaning is usually described in one place: the core DT schema available at
https://github.com/devicetree-org/dt-schema.

• compatible, reg, #address-cells, etc
▶ Cover common consumer-provider relationships

• Their meaning is either described in the dt-schema GitHub repository or under
Documentation/devicetree/bindings.

• clocks, interrupts, regulators, etc
▶ Subsystem specific

• All devices of a certain class may use them, often starting with the class name
• spi-cpha, i2c-scl-internal-delay-ns, nand-ecc-engine, mac-address, etc

▶ Vendor/device specific
• To describe uncommon or very specific properties
• Always described in the device’s binding file and prefixed with <vendor>,
• ti,hwmods, xlnx,num-channels, nxp,tx-output-mode, etc

▶ Some of them are deprecated, watch out the bindings!
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/437

https://github.com/devicetree-org/dt-schema
https://github.com/devicetree-org/dt-schema
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings

The compatible property
▶ Is a list of strings

• From the most specific to the least specific
▶ Describes the specific binding to which the node complies.
▶ It uniquely identifies the programming model of the device.
▶ Practically speaking, it is used by the operating system to find the appropriate

driver for this device.
▶ When describing real hardware, the typical form is vendor,model
▶ Examples:

• compatible = "arm,armv7-timer";
• compatible = "st,stm32mp1-dwmac", "snps,dwmac-4.20a";
• compatible = "regulator-fixed";
• compatible = "gpio-keys";

▶ Special value: simple-bus → bus where all sub-nodes are memory-mapped
devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/437

compatible property and Linux kernel drivers

▶ Linux identifies as platform devices:
• Top-level DT nodes with a compatible string
• Sub-nodes of simple-bus

Instantiated automatically at boot time
▶ Sub-nodes of I2C controllers → I2C devices
▶ Sub-nodes of SPI controllers → SPI devices
▶ Each Linux driver has a table of compatible

strings it supports
• struct of_device_id[]

▶ When a DT node compatible string matches a
given driver, the device is bound to that driver.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/437

https://elixir.bootlin.com/linux/latest/ident/of_device_id

Matching with drivers in Linux: platform driver

drivers/i2c/busses/i2c-omap.c

static const struct of_device_id omap_i2c_of_match[] = {
{

.compatible = "ti,omap4-i2c",

.data = &omap4_pdata,
},
{

.compatible = "ti,omap3-i2c",

.data = &omap3_pdata,
},
[...]
{ },

};
MODULE_DEVICE_TABLE(of, omap_i2c_of_match);

[...]

static struct platform_driver omap_i2c_driver = {
.probe = omap_i2c_probe,
.remove = omap_i2c_remove,
.driver = {

.name = "omap_i2c",

.pm = &omap_i2c_pm_ops,

.of_match_table = of_match_ptr(omap_i2c_of_match),
},

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/437

https://elixir.bootlin.com/linux/latest/source/drivers/i2c/busses/i2c-omap.c

Matching with drivers in Linux: I2C driver

sound/soc/codecs/cs42l51.c

const struct of_device_id cs42l51_of_match[] = {
{ .compatible = "cirrus,cs42l51", },
{ }

};
MODULE_DEVICE_TABLE(of, cs42l51_of_match);

sound/soc/codecs/cs42l51-i2c.c

static struct i2c_driver cs42l51_i2c_driver = {
.driver = {

.name = "cs42l51",

.of_match_table = cs42l51_of_match,

.pm = &cs42l51_pm_ops,
},
.probe = cs42l51_i2c_probe,
.remove = cs42l51_i2c_remove,
.id_table = cs42l51_i2c_id,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/437

https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51.c
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51-i2c.c

reg property

▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

};

▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/437

reg property
▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.

&i2c1 {
hdmi-transmitter@39 {

reg = <0x39>;
};
cs42l51: cs42l51@4a {

reg = <0x4a>;
};

};

▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/437

reg property
▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number

&qspi {
flash0: mx66l51235l@0 {

reg = <0>;
};
flash1: mx66l51235l@1 {

reg = <1>;
};

};

▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/437

reg property

▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/437

cells property
▶ Property numbers shall fit into 32-bit containers called cells
▶ The compiler does not maintain information about the number of entries, the OS

just receives 4 independent cells
• Example with a reg property using 2 entries of 2 cells:

reg = <0x50027000 0x4>, <0x500273f0 0x10>;

• The OS cannot make the difference with:

reg = <0x50027000>, <0x4>, <0x500273f0>, <0x10>;
reg = <0x50027000 0x4 0x500273f0>, <0x10>;
reg = <0x50027000>, <0x4 0x500273f0 0x10>;
reg = <0x50027000 0x4 0x500273f0 0x10>;

▶ Need for other properties to declare the right formatting:
• #address-cells: Indicates the number of cells used to carry the address
• #size-cells: Indicates the dimension of the address range. 0: one address, 1:

address range (interval), 2: multiple address ranges.
▶ The parent-node declares the children reg property formatting

• Platform devices need memory ranges
• SPI devices need chip-selects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/437

cells property
▶ Property numbers shall fit into 32-bit containers called cells
▶ The compiler does not maintain information about the number of entries, the OS

just receives 4 independent cells
▶ Need for other properties to declare the right formatting:

• #address-cells: Indicates the number of cells used to carry the address
• #size-cells: Indicates the dimension of the address range. 0: one address, 1:

address range (interval), 2: multiple address ranges.
▶ The parent-node declares the children reg property formatting

• Platform devices need memory ranges

module@a0000 {
#address-cells = <1>;
#size-cells = <1>;

serial@1000 {
reg = <0x1000 0x10>, <0x2000 0x10>;

};
};

• SPI devices need chip-selects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/437

cells property
▶ Property numbers shall fit into 32-bit containers called cells
▶ The compiler does not maintain information about the number of entries, the OS

just receives 4 independent cells
▶ Need for other properties to declare the right formatting:

• #address-cells: Indicates the number of cells used to carry the address
• #size-cells: Indicates the dimension of the address range. 0: one address, 1:

address range (interval), 2: multiple address ranges.
▶ The parent-node declares the children reg property formatting

• Platform devices need memory ranges
• SPI devices need chip-selects

spi@300000 {
#address-cells = <1>;
#size-cells = <0>;

flash@1 {
reg = <1>;

};
};- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/437

Status property

▶ The status property indicates if the device is really in use or not
• okay or ok → the device is really in use
• any other value, by convention disabled → the device is not in use

▶ In Linux, controls if a device is instantiated
▶ In .dtsi files describing SoCs: all devices that interface to the outside world have

status = "disabled";

▶ Enabled on a per-device basis in the board .dts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/437

Resources: interrupts, clocks, DMA, reset lines, ...

▶ Common pattern for resources shared
by multiple hardware blocks

• Interrupt lines
• Clock controllers
• DMA controllers
• Reset controllers
• ...

▶ A Device Tree node describing the
controller as a device

▶ References from other nodes that use
resources provided by this controller

intc: interrupt-controller@a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>, <0xa0022000 0x2000>;

};

rcc: rcc@50000000 {
compatible = "st,stm32mp1-rcc", "syscon";
reg = <0x50000000 0x1000>;
#clock-cells = <1>;
#reset-cells = <1>;

};

dmamux1: dma-router@48002000 {
compatible = "st,stm32h7-dmamux";
reg = <0x48002000 0x1c>;
#dma-cells = <3>;
clocks = <&rcc DMAMUX>;
resets = <&rcc DMAMUX_R>;

};

spi3: spi@4000c000 {
interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc SPI3_K>;
resets = <&rcc SPI3_R>;
dmas = <&dmamux1 61 0x400 0x05>, <&dmamux1 62 0x400 0x05>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/437

Generic suffixes

▶ xxx-gpios
• When drivers need access to GPIOs
• May be subsystem-specific or vendor-specific
• Examples: enable-gpios, cts-gpios, rts-gpios

▶ xxx-names
• Sometimes naming items is relevant
• Allows drivers to perform lookups by name rather than ID
• The order of definition of each item still matters
• Examples: gpio-names, clock-names, reset-names

uart0@4000c000 {
dmas = <&edma 26 0>, <&edma 27 0>;
dma-names = "tx", "rx";
...

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/437

How to validate Device Tree content? 1/2

▶ compatible properties enforce a specific programming model
▶ OS expect a specific set of properties in each node

• The syntax is fixed
• The content is defined (number of items, their size, their meaning)
• Some properties are mandatory

▶ How do I check the validity of a DT snippet?
• How do I avoid losing half a day on a typo?
• Looking at drivers to understand the DT structure tends to make it OS-specific

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/437

How to validate Device Tree content? 2/2

▶ Device Tree Specifications → base Device Tree
syntax + number of standard properties.

• https://www.devicetree.org/specifications/
• Not sufficient to describe the wide variety of hardware.

▶ Device Tree Bindings → describes how a piece of HW
should be described

• Common bindings are defined in an external repository
https://github.com/devicetree-org/dt-
schema/tree/main/dtschema/schemas

Generic properties: reg or #address-cells
Consumer bindings: interrupts, clocks, dmas, etc

• Device-specific descriptions are in the Linux kernel
sources Documentation/devicetree/bindings/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/437

https://www.devicetree.org/specifications/
https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas
https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/

Device Tree bindings

▶ Bindings are improved as part of the Linux kernel contribution process
▶ They are carefully reviewed by DT binding maintainers and can only be merged

once approved by them
▶ Need for automated verifications:

• Legacy: human readable .txt documents, hardly parsable by tools
• Current norm: YAML-written specifications, easy to parse by humans and tools at

the same time!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/437

Device Tree binding: legacy style

Documentation/devicetree/bindings/i2c/i2c-omap.txt

I2C for OMAP platforms

-Required properties :
- compatible : Must be

"ti,omap2420-i2c" for OMAP2420 SoCs
"ti,omap2430-i2c" for OMAP2430 SoCs
"ti,omap3-i2c" for OMAP3 SoCs
"ti,omap4-i2c" for OMAP4+ SoCs
"ti,am654-i2c", "ti,omap4-i2c" for AM654 SoCs
"ti,j721e-i2c", "ti,omap4-i2c" for J721E SoCs
"ti,am64-i2c", "ti,omap4-i2c" for AM64 SoCs

- ti,hwmods : Must be "i2c<n>", n being the instance number (1-based)
- #address-cells = <1>;
- #size-cells = <0>;

Recommended properties :
- clock-frequency : Desired I2C bus clock frequency in Hz. Otherwise
the default 100 kHz frequency will be used.

Optional properties:
- Child nodes conforming to i2c bus binding

Note: Current implementation will fetch base address, irq and dma
from omap hwmod data base during device registration.
Future plan is to migrate hwmod data base contents into device tree
blob so that, all the required data will be used from device tree dts
file.

Examples :

i2c1: i2c@0 {
compatible = "ti,omap3-i2c";
#address-cells = <1>;
#size-cells = <0>;
ti,hwmods = "i2c1";
clock-frequency = <400000>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/437

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/i2c/i2c-omap.txt

Device Tree binding: YAML style
Documentation/devicetree/bindings/i2c/ti,omap4-i2c.yaml

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2

$id: http://devicetree.org/schemas/i2c/ti,omap4-i2c.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: I2C controllers on TI's OMAP and K3 SoCs

maintainers:
- Vignesh Raghavendra <vigneshr@ti.com>

properties:
compatible:
oneOf:

- enum:
- ti,omap2420-i2c
- ti,omap2430-i2c
- ti,omap3-i2c
- ti,omap4-i2c

- items:
- enum:

- ti,am4372-i2c
- ti,am64-i2c
- ti,am654-i2c
- ti,j721e-i2c

- const: ti,omap4-i2c

reg:
maxItems: 1

interrupts:
maxItems: 1

clocks:
maxItems: 1

clock-names:
const: fck

clock-frequency: true

power-domains: true

"#address-cells":
const: 1

"#size-cells":
const: 0

ti,hwmods:
description:

Must be "i2c<n>", n being [...]
$ref: /schemas/types.yaml#/definitions/string
deprecated: true

required:
- compatible
- reg
- interrupts

additionalProperties: false

if:
properties:

compatible:
enum:

- ti,omap2420-i2c
- ti,omap2430-i2c
- ti,omap3-i2c
- ti,omap4-i2c

then:
properties:

ti,hwmods:
items:
- pattern: "^i2c([1-9])$"

else:
properties:

ti,hwmods: false

examples:
- |

#include <dt-bindings/interrupt-controller/irq.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>

main_i2c0: i2c@2000000 {
compatible = "ti,j721e-i2c", "ti,omap4-i2c";
reg = <0x2000000 0x100>;
interrupts = <GIC_SPI 200 IRQ_TYPE_LEVEL_HIGH>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/437

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/i2c/ti,omap4-i2c.yaml

Validating Device Trees

▶ dtc only does syntactic validation
▶ YAML bindings allow to do semantic validation
▶ Linux kernel make rules:

• make dt_binding_check
verify that YAML bindings are valid, particularly useful if you write examples!

• make dtbs_check
validate DTs currently enabled against YAML bindings

▶ The combination of DTS and bindings growing, it may sometimes be relevant to
only check against a subset of matching schema by adding the DT_SCHEMA_FILES
specifier on the make command line:

• eg. make DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-
devices.yaml dtbs_check

• Can be used with both dt_binding_check and dtbs_check

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/437

Bindings syntax: base structure

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2

$id: http://devicetree.org/schemas/<path>/<file-name.yaml>#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: <Type and name of the device>

maintainers:
- John Doe <john@doe.com>

description: |
Some multiline text.

At an additional indentation level.

This line is a comment
properties:

prop-a:
...

prop-b:
...

Each YAML file defines one DT hierarchical level
(up to two when there are children nodes expected)
▶ %YAML defines the expected language version
▶ $id maybe not a real URL, but a unique

identifier
▶ $schema refers to the base meta-schema this

file should be validated against (in the Github
repository mentioned previously)

▶ properties: where the definitions start
▶ All possible properties should be listed

• dash-separated lowercase names
• names followed by a colon ’:’ and a new line

▶ Every indentation level is 2 spaces
▶ An empty line between property definitions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/437

Bindings syntax: types

properties:
A boolean property, basically a yes or no
pin-x-not-wired: # pin-x-not-wired;
type: boolean

Expects a single 32-bit numerical value
start-offset: # start-offset: <0x1000>;
$ref: /schemas/types.yaml#/definitions/uint32

The suffix already enforces a numerical value!
In this case if there is no additional constraint
we set the property to 'true'
my-freq-hz: true # my-freq-hz = <100000>;

Expects an array of 32-bit numerical values
supported-rates: # supported-rates = <25>, <50>;
$ref: /schemas/types.yaml#/definitions/uint32-array

A string value is expected
instruction-set: # instruction-set = "extended";
$ref: /schemas/types.yaml#/definitions/string

Phandles will be expected
sampling-lines: # sampling-lines = <&pioA 1>, <&pioA 5>;
$ref: /schemas/types.yaml#/definitions/phandle-array

Here as well, but no need to repeat the constraint
because '-gpios' is a generic suffix
reset-gpios: true # reset-gpios = <&gpio SOC_SPEC_IDX>;

▶ Properties must be typed, either with the
type: or the ref: keyword.

• Boolean properties require no value
• Numerical values can be signed or unsigned

but should always be 32-bit wide
• Strings should always be fully defined (see

next slides)
• Arrays and matrices are possible as well

▶ Generic bindings already set the type for many
properties:

• Their values/items numbers can be
constrained further

• The types don’t need to be repeated however
▶ dt-schema will enforce a type based on the

property name suffix, eg: -hz, -ohms, -us

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/437

Bindings syntax: child nodes

properties:
The sub-node can only be named: child-node
child-node:
type: object

patternProperties:
The sub-node name is flexible, eg: child@1000, child@2a, etc
"^child@[a-f0-9]+$":
type: object

▶ From a yaml-schema perspective, children
nodes are just another property

▶ A specific type shall however be enforced:
• type: object

▶ Under the main properties keyword,
property/sub-node names are fixed

• If the sub-node name is dynamic, we shall
define it under another top-level keyword,
patternProperties and use pattern-matching
regexes for the naming

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/437

Bindings syntax: expressing constraints

Besides defining precisely the different properties and their type, the content of the
property values must also be constrained.
▶ All properties can get an additional description parameter, which is only

readable by humans
▶ We try to maximize the constraints to minimize human errors
▶ One new line per constraint

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/437

Bindings syntax: numerical constraints

properties:
The numerical value is bounded
This is valid:
frequency-hz = <100000>;
frequency-hz = <0x40000>; /* 262144 Hz */
This is not:
frequency-hz = <0>;
frequency-hz = <&gpio 10>;
frequency-hz:
minimum: 10000
maximum: 400000
default: 100000

This is an array with either 1 or 2 members
This is valid:
cs-gpios = <&gpioA 1>;
cs-gpios = <&gpioA 1>, <gpioA 5>;
This is not:
cs-gpios = <&gpioA 1>, <gpioA 5>, <gpioA 6>;
cs-gpios = <50>;
cs-gpios:
minItems: 1
maxItems: 2

▶ Example of constraints:
• minimum:/maximum: min/max values for a

single value
• default: for a default value
• minItems:/maxItems: min/max number of

items in an array

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/437

Bindings syntax: lists and dictionaries

properties:
This is a very common compatible definition
The only allowed combinations are (order matters):
compatible = "vendor1,compat", "generic,compat";
compatible = "vendor2,compat", "generic,compat";
compatible = "legacy-compat";
compatible:
oneOf:

- items:
- enum:

- vendor1,compat
- vendor2,compat

- const: generic,compat
- items:

- const: legacy-compat

Property name is known by dt-schema, type will be inferred
No need for minItems/maxItems, 2 will be implied from
the main items list!
clocks:
items:

- description: Interconnect
- description: External bus

This is valid: strength = <0>, <5>;
This is invalid: strength = <0>;
strength = <0>, <8>;
strength:
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 2
maxItems: 2
items:

maximum: 5

▶ Expressing several possible property values
(works with numbers and strings):

• Force a single expected value: const
• Allow taking one value from a list: enum

watch out the indentation: 2 spaces from
the previous keyword and a dash

▶ const/enum can be grouped within an items
list, where each items sub-entry must be
observed

▶ We can build abstract conditional lists (eg. on
top of items rather than proper values like
with const/enum:

• XOR using oneOf
• OR using anyOf
• AND using allOf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/437

Bindings syntax: referencing other bindings

All properties/constraints defined in generic-controller.yaml
will apply (but they can be tuned/overwritten below)
allOf:

- $ref: generic-controller.yaml

properties:
Tune a property defined in generic-controller.yaml
prop-a:
maximum: 1

Allow a new, more specific property
vendor,specific-prop: true

common-child-constraints.yaml will enforce a base set of
properties and rules
child-node:
type: object
$ref: common-child-constraints.yaml

▶ It is possible to write ”common” constraints in
a YAML file and refer to it

• Very usual when describing a certain type of
controller

Refer to the generic constraints with a
top-level allOf
Add constraints which are specific to the
hardware implementation

• Possible to constrain children nodes by
referencing another YAML file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/437

Bindings syntax: altering on presence of properties

properties:
compatible:
enum:

- compat1
- compat2

prop-a: true

prop-b: true

prop-c: true

dependencies:
prop-a: ['prop-b']
prop-b: ['prop-a']

allOf:
- if:

properties:
compatible:
contains:

const: compat1
then:

properties:
prop-c: false

▶ Sometimes more dynamic descriptions are
needed

• Dependencies between properties
A property may be needed if there is another
property
If both or none shall be present, the
dependency should be expressed twice (in
both directions)

• Changing constraints based on a property
Can be expressed using if/else statements
under the top-level allOf
Typical case: a compatible implies tweaking
a constraint

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/437

Bindings syntax: enforcing correct properties only

allOf:
- $ref: generic-file.yaml

properties:
prop-a: true

prop-b: true

child-node:
type: object
properties:

prop-c: true
prop-d: true

required:
- prop-c

No additional property than the ones above
will be allowed inside child-node
additionalProperties: false

required:
- prop-a

Only properties defined below or coming from
generic-file.yaml will be allowed
unevaluatedProperties: false

▶ YAML files list properties and add constraints
to them

• It is still possible to add undefined properties
• It is still possible to forget defining a

mandatory property
▶ We need further constraints to spot typos and

unexpected properties
• required forces the presence
• additionalProperties prevents any property

not defined in this file to be used
• unevaluatedProperties prevents any

property not defined in this file nor referenced
(through allOf or $ref) to be used

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/437

Bindings syntax: validating your own bindings

properties:
prop-a: true
prop-b: true

child-node:
type: object
additionalProperties: false

required:
- prop-a

unevaluatedProperties: false

example:
- |
node@1000 {

prop-a;
};

▶ It is very recommended to test your bindings
before testing your DTS

• Add examples at the end of your file!
• Examples are indented with 4 spaces

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/437

References

▶ Device Tree 101 webinar, Thomas Petazzoni
(2021):
Slides: https://bootlin.com/blog/device-
tree-101-webinar-slides-and-videos/
Video: https://youtu.be/a9CZ1Uk3OYQ

▶ Kernel documentation
• driver-api/driver-model/
• devicetree/
• filesystems/sysfs

▶ https://devicetree.org
▶ The kernel source code

• Full of examples of other drivers!
• Reference DT binding implementation:

Documentation/devicetree/bindings/
example-schema.yaml

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/437

https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://youtu.be/a9CZ1Uk3OYQ
https://www.kernel.org/doc/html/latest/driver-api/driver-model/
https://www.kernel.org/doc/html/latest/devicetree/
https://www.kernel.org/doc/html/latest/filesystems/sysfs.html
https://devicetree.org
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/example-schema.yaml
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/example-schema.yaml

Practical lab - Describing hardware devices

▶ Browse and update Device Trees.
▶ Use GPIO LEDs.
▶ Modify the Device Tree to enable an I2C

controller and describe an I2C device.
▶ Write a yaml binding to validate a device

description.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/437

Introduction to pin muxing

Introduction to pin
muxing

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/437

What is pin muxing?

▶ Modern SoCs (System on Chip) include more and more hardware blocks, many of
which need to interface with the outside world using pins.

▶ However, the physical size of the chips remains small, and therefore the number of
available pins is limited.

▶ For this reason, not all of the internal hardware block features can be exposed on
the pins simultaneously.

▶ The pins are multiplexed: they expose either the functionality of hardware block
A or the functionality of hardware block B.

▶ This multiplexing is usually software configurable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/437

Pin muxing diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/437

Pin muxing in the Linux kernel

▶ Since Linux 3.2, a pinctrl subsystem has been added.
▶ This subsystem, located in drivers/pinctrl/ provides a generic subsystem to

handle pin muxing. It offers:
• A pin muxing driver interface, to implement the system-on-chip specific drivers that

configure the muxing.
• A pin muxing consumer interface, for device drivers.

▶ Most pinctrl drivers provide a Device Tree binding, and the pin muxing must be
described in the Device Tree.

• The exact Device Tree binding depends on each driver. Each binding is defined in
Documentation/devicetree/bindings/pinctrl.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/437

https://elixir.bootlin.com/linux/latest/source/drivers/pinctrl/
https://kernel.org/doc/Documentation/devicetree/bindings/pinctrl

pinctrl subsystem diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/437

Device Tree properties for consumer devices

The devices that require certains pins to be muxed will use the pinctrl-<x> and
pinctrl-names Device Tree properties.
▶ The pinctrl-0, pinctrl-1, pinctrl-<x> properties link to a pin configuration

for a given state of the device.
▶ The pinctrl-names property associates a name to each state. The name

default is special, and is automatically selected by a device driver, without
having to make an explicit pinctrl function call.

▶ See Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt for
details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/437

https://kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt

Device Tree properties for consumer devices - Examples

i2c0: i2c@11000 {
...
pinctrl-0 = <&pmx_twsi0>;
pinctrl-names = "default";
...

};

Most common case (arch/arm/boot/dts/
marvell/kirkwood.dtsi)

i2c0: i2c@f8014000 {
...
pinctrl-names = "default", "gpio";
pinctrl-0 = <&pinctrl_i2c0>;
pinctrl-1 = <&pinctrl_i2c0_gpio>;
...

};

Case with multiple pin states (arch/arm/
boot/dts/microchip/sama5d4.dtsi)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/437

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/marvell/kirkwood.dtsi
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/marvell/kirkwood.dtsi
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/microchip/sama5d4.dtsi
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/microchip/sama5d4.dtsi

Defining pinctrl configurations

▶ The different pinctrl configurations must be defined as child nodes of the main
pinctrl device (which controls the muxing of pins).

▶ The configurations may be defined at:
• the SoC level (.dtsi file), for pin configurations that are often shared between

multiple boards
• at the board level (.dts file) for configurations that are board specific.

▶ The pinctrl-<x> property of the consumer device points to the pin configuration
it needs through a DT phandle.

▶ The description of the configurations is specific to each pinctrl driver. See
Documentation/devicetree/bindings/pinctrl for the pinctrl bindings.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/437

https://kernel.org/doc/Documentation/devicetree/bindings/pinctrl

Example on OMAP/AM33xx

▶ On OMAP/AM33xx, the pinctrl-single
driver is used. It is common between multiple
SoCs and simply allows to configure pins by
writing a value to a register.

• In each pin configuration, a
pinctrl-single,pins value gives a list
of (register, value) pairs needed to
configure the pins.

▶ To know the correct values, one must use the
SoC and board datasheets.

/* Excerpt from am335x-bone-common.dts */

&am33xx_pinmux {
...
i2c2_pins: pinmux_i2c2_pins {

pinctrl-single,pins = <
AM33XX_PADCONF(AM335X_PIN_UART1_CTSN, PIN_INPUT_PULLUP, MUX_MODE3)
/* uart1_ctsn.i2c2_sda */
AM33XX_PADCONF(AM335X_PIN_UART1_RTSN, PIN_INPUT_PULLUP, MUX_MODE3)
/* uart1_rtsn.i2c2_scl */

>;
};

};

&i2c2 {
pinctrl-names = "default";
pinctrl-0 = <&i2c2_pins>;

status = "okay";
clock-frequency = <400000>;
...

pressure@76 {
compatible = "bosch,bmp280";
reg = <0x76>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/437

Example on the Allwinner A20 SoC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/437

Illustration: live pin muxing configuration

Choosing exposed signals

Viewing pin assignments
on the PCB

Show the DTS,
generate the DTB

Try ACME Systems’ on-line pin-out generator: http://linux.tanzilli.com/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/437

http://linux.tanzilli.com/

Practical lab - Setup pinmuxing to enable I2C communication

▶ Configure the pinmuxing for the I2C bus used
to communicate with the Nunchuk

▶ Validate that the I2C communication works
with user space tools.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/437

Linux device and driver model

Linux device and driver
model

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/437

Linux device and driver model

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/437

The need for a device model?

▶ The Linux kernel runs on a wide range of architectures and hardware platforms,
and therefore needs to maximize the reusability of code between platforms.

▶ For example, we want the same USB device driver to be usable on a x86 PC, or
an ARM platform, even though the USB controllers used on these platforms are
different.

▶ This requires a clean organization of the code, with the device drivers separated
from the controller drivers, the hardware description separated from the drivers
themselves, etc.

▶ This is what the Linux kernel Device Model allows, in addition to other
advantages covered in this section.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/437

Kernel and device drivers

In Linux, a driver is always interfacing with:
▶ a framework that allows the driver to expose the

hardware features in a generic way.
▶ a bus infrastructure, part of the device model, to

detect/communicate with the hardware.
This section focuses on the bus infrastructure, while kernel
frameworks are covered later in this training.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/437

Device model data structures

▶ The device model is organized around three main data structures:
• The struct bus_type structure, which represents one type of bus (USB, PCI, I2C,

etc.)
• The struct device_driver structure, which represents one driver capable of

handling certain devices on a certain bus.
• The struct device structure, which represents one device connected to a bus

▶ The kernel uses inheritance to create more specialized versions of
struct device_driver and struct device for each bus subsystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/437

https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/device

Bus drivers

▶ The first component of the device model is the bus driver
• One bus driver for each type of bus: USB, PCI, SPI, MMC, I2C, etc.

▶ It is responsible for
• Registering the bus type (struct bus_type)
• Allowing the registration of adapter drivers (USB controllers, I2C adapters, etc.),

able to detect the connected devices (if possible), and providing a communication
mechanism with the devices

• Allowing the registration of device drivers (USB devices, I2C devices, PCI devices,
etc.), managing the devices

• Matching the device drivers against the devices detected by the adapter drivers.
• Provides an API to implement both adapter drivers and device drivers
• Defining driver and device specific structures, eg. struct usb_driver and

struct usb_interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/437

https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/ident/usb_interface

sysfs

▶ The bus, device, drivers, etc. structures are internal to the kernel
▶ The sysfs virtual filesystem offers a mechanism to export such information to

user space
▶ Used for example by udev to provide automatic module loading, firmware loading,

mounting of external media, etc.
▶ sysfs is usually mounted in /sys

• /sys/bus/ contains the list of buses
• /sys/devices/ contains the list of devices
• /sys/class enumerates devices by the framework they are registered to (net,

input, block...), whatever bus they are connected to. Very useful!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/437

Linux device and driver model

Example of the USB bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/437

Example: USB bus 1/3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/437

Example: USB bus 2/3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/437

Example: USB bus 3/3

▶ Core infrastructure (bus driver)
• drivers/usb/core/
• struct bus_type is defined in drivers/usb/core/driver.c and registered in

drivers/usb/core/usb.c

▶ Adapter drivers
• drivers/usb/host/
• For EHCI, UHCI, OHCI, XHCI, and their implementations on various systems

(Microchip, IXP, Xilinx, OMAP, Samsung, PXA, etc.)
▶ Device drivers

• Everywhere in the kernel tree, classified by their type (Example: drivers/net/usb/)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/437

https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/
https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/driver.c
https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/usb.c
https://elixir.bootlin.com/linux/latest/source/drivers/usb/host/
https://elixir.bootlin.com/linux/latest/source/drivers/net/usb/

Example of device driver

▶ To illustrate how drivers are implemented to work with the
device model, we will study the source code of a driver for a
USB network card

• It is USB device, so it has to be a USB device driver
• It exposes a network device, so it has to be a network driver
• Most drivers rely on a bus infrastructure (here, USB) and

register themselves in a framework (here, network)
▶ We will only look at the device driver side, and not the

adapter driver side
▶ The driver we will look at is drivers/net/usb/rtl8150.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/437

https://elixir.bootlin.com/linux/latest/source/drivers/net/usb/rtl8150.c

Device identifiers

▶ Defines the set of devices that this driver can manage, so that the USB core
knows for which devices this driver should be used

▶ The MODULE_DEVICE_TABLE() macro allows depmod (run by
make modules_install) to extract the relationship between device identifiers and
drivers, so that drivers can be loaded automatically by udev. See
/lib/modules/$(uname -r)/modules.{alias,usbmap}

static struct usb_device_id rtl8150_table[] = {
{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150) },
{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX) },
{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) },
{ USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX) },
[...]
{}

};
MODULE_DEVICE_TABLE(usb, rtl8150_table);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/437

https://elixir.bootlin.com/linux/latest/ident/MODULE_DEVICE_TABLE

Instantiation of usb_driver

▶ struct usb_driver is a structure defined by the USB core. Each USB device
driver must instantiate it, and register itself to the USB core using this structure

▶ This structure inherits from struct device_driver, which is defined by the
device model.

static struct usb_driver rtl8150_driver = {
.name = "rtl8150",
.probe = rtl8150_probe,
.disconnect = rtl8150_disconnect,
.id_table = rtl8150_table,
.suspend = rtl8150_suspend,
.resume = rtl8150_resume

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/437

https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/ident/device_driver

Driver registration and unregistration
▶ When the driver is loaded / unloaded, it must register / unregister itself to / from the

USB core
▶ Done using usb_register() and usb_deregister(), provided by the USB core.

static int __init usb_rtl8150_init(void)
{

return usb_register(&rtl8150_driver);
}

static void __exit usb_rtl8150_exit(void)
{

usb_deregister(&rtl8150_driver);
}

module_init(usb_rtl8150_init);
module_exit(usb_rtl8150_exit);

▶ All this code is actually replaced by a call to the module_usb_driver() macro:

module_usb_driver(rtl8150_driver);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/437

https://elixir.bootlin.com/linux/latest/ident/usb_register
https://elixir.bootlin.com/linux/latest/ident/usb_deregister
https://elixir.bootlin.com/linux/latest/ident/module_usb_driver

At Initialization

▶ The USB adapter driver that corresponds to the USB controller of the system
registers itself to the USB core

▶ The rtl8150 USB device driver registers itself to the USB core

▶ The USB core now knows the association between the vendor/product IDs of
rtl8150 and the struct usb_driver structure of this driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/437

https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/usb_driver

When a device is detected

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/437

Probe method

▶ Invoked for each device bound to a driver
▶ The probe() method receives as argument a structure describing the device,

usually specialized by the bus infrastructure (struct pci_dev,
struct usb_interface, etc.)

▶ This function is responsible for
• Initializing the device, mapping I/O memory, registering the interrupt handlers. The

bus infrastructure provides methods to get the addresses, interrupt numbers and
other device-specific information.

• Registering the device to the proper kernel framework, for example the network
infrastructure.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/437

https://elixir.bootlin.com/linux/latest/ident/pci_dev
https://elixir.bootlin.com/linux/latest/ident/usb_interface

Example: probe() and disconnect() methods

static int rtl8150_probe(struct usb_interface *intf,
const struct usb_device_id *id)

{
rtl8150_t *dev;
struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));
[...]
dev = netdev_priv(netdev);
tasklet_init(&dev->tl, rx_fixup, (unsigned long)dev);
spin_lock_init(&dev->rx_pool_lock);
[...]
netdev->netdev_ops = &rtl8150_netdev_ops;
alloc_all_urbs(dev);
[...]
usb_set_intfdata(intf, dev);
SET_NETDEV_DEV(netdev, &intf->dev);
register_netdev(netdev);

return 0;
}

static void rtl8150_disconnect(struct usb_interface *intf)
{

rtl8150_t *dev = usb_get_intfdata(intf);

usb_set_intfdata(intf, NULL);
if (dev) {

set_bit(RTL8150_UNPLUG, &dev->flags);
tasklet_kill(&dev->tl);
unregister_netdev(dev->netdev);
unlink_all_urbs(dev);
free_all_urbs(dev);
free_skb_pool(dev);
if (dev->rx_skb)

dev_kfree_skb(dev->rx_skb);
kfree(dev->intr_buff);
free_netdev(dev->netdev);

}
}

Source: drivers/net/usb/rtl8150.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/437

https://elixir.bootlin.com/linux/latest/source/drivers/net/usb/rtl8150.c

The model is recursive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/437

Linux device and driver model

Platform drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/437

Platform devices

▶ Amongst the non-discoverable devices, a huge family are the devices that are
directly part of a system-on-chip: UART controllers, Ethernet controllers, SPI or
I2C controllers, graphic or audio devices, etc.

▶ In the Linux kernel, a special bus, called the platform bus has been created to
handle such devices.

▶ It supports platform drivers that handle platform devices.
▶ It works like any other bus (USB, PCI), except that devices are enumerated

statically instead of being discovered dynamically.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/437

Implementation of a platform driver (1)

The driver implements a struct platform_driver structure (example taken from
drivers/tty/serial/imx.c, simplified)

static struct platform_driver serial_imx_driver = {
.probe = serial_imx_probe,
.remove = serial_imx_remove,
.id_table = imx_uart_devtype,
.driver = {

.name = "imx-uart",

.of_match_table = imx_uart_dt_ids,

.pm = &imx_serial_port_pm_ops,
},

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/437

https://elixir.bootlin.com/linux/latest/ident/platform_driver
https://elixir.bootlin.com/linux/latest/source/drivers/tty/serial/imx.c

Implementation of a platform driver (2)

... and registers its driver to the platform driver infrastructure

static int __init imx_serial_init(void) {
return platform_driver_register(&serial_imx_driver);

}

static void __exit imx_serial_cleanup(void) {
platform_driver_unregister(&serial_imx_driver);

}

module_init(imx_serial_init);
module_exit(imx_serial_cleanup);

Most drivers actually use the module_platform_driver() macro when they do
nothing special in init() and exit() functions:

module_platform_driver(serial_imx_driver);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/437

https://elixir.bootlin.com/linux/latest/ident/module_platform_driver

Platform device instantiation

▶ As platform devices cannot be detected dynamically, they are defined statically
• Legacy way: by direct instantiation of struct platform_device structures, as done

on a few old ARM platforms. The device was part of a list, and the list of devices
was added to the system during board initialization.

• Current way: by parsing an ”external” description, like a device tree on most
embedded platforms today, from which struct platform_device structures are
created.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/437

https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/platform_device

Using additional hardware resources

▶ Regular DT descriptions contain many information, including phandles (pointers)
towards additional hardware blocks or hardware details which cannot be
discovered.

• Some of them are available through a generic array of resources, like addresses for
the I/O registers and IRQ lines:

Such information can be represented using struct resource, and an array of
struct resource is associated to each struct platform_device.

• Common information/dependencies are parsed by the relevant subsystems, like
clocks, GPIOs, or DMA channels:

Each subsystem is responsible of instantiating its components, and offering an API to
retrieve these objects and use them from device drivers.

• Specific information might be directly be retrieved by device drivers, through
(expensive) direct DT lookups (old drivers use struct platform_data).

▶ All these methods allow the same driver to be used with multiple devices
functioning similarly, but with different addresses, IRQs, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/437

https://elixir.bootlin.com/linux/latest/ident/resource
https://elixir.bootlin.com/linux/latest/ident/resource
https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/platform_data

Using resources

▶ The platform driver has access to the resources:

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = ioremap(res->start, PAGE_SIZE);
sport->rxirq = platform_get_irq(pdev, 0);

▶ As well as the various common dependencies through individual APIs:
• clk_get()
• gpio_request()
• dma_request_channel()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/437

https://elixir.bootlin.com/linux/latest/ident/clk_get
https://elixir.bootlin.com/linux/latest/ident/gpio_request
https://elixir.bootlin.com/linux/latest/ident/dma_request_channel

Driver data
▶ In addition to the per-device resources and information, drivers may require

driver-specific information to behave slighlty differently when different flavors of
an IP block are driven by the same driver.

▶ A const void *data pointer can be used to store per-compatible specificities:
static const struct of_device_id marvell_nfc_of_ids[] = {

{
.compatible = "marvell,armada-8k-nand-controller",
.data = &marvell_armada_8k_nfc_caps,

},
};

▶ Which can be retrieved in the probe with:
/* Get NAND controller capabilities */
if (pdev->id_entry) /* legacy way */

nfc->caps = (void *)pdev->id_entry->driver_data;
else /* current way */

nfc->caps = of_device_get_match_data(&pdev->dev);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/437

Introduction to the I2C subsystem

Introduction to the I2C
subsystem

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/437

What is I2C?

▶ A very commonly used low-speed bus to connect on-board and external devices to
the processor.

▶ Uses only two wires: SDA for the data, SCL for the clock.
▶ It is a master/slave bus: only the master can initiate transactions, and slaves can

only reply to transactions initiated by masters.
▶ In a Linux system, the I2C controller embedded in the processor is typically the

master, controlling the bus.
▶ Each slave device is identified by an I2C address (you can’t have 2 devices with

the same address on the same bus). Each transaction initiated by the master
contains this address, which allows the relevant slave to recognize that it should
reply to this particular transaction.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/437

An I2C bus example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/437

The I2C bus driver

▶ Like all bus subsystems, the I2C bus driver is responsible for:
• Providing an API to implement I2C controller drivers
• Providing an API to implement I2C device drivers, in kernel space
• Providing an API to implement I2C device drivers, in user space

▶ The core of the I2C bus driver is located in drivers/i2c/.
▶ The I2C controller drivers are located in drivers/i2c/busses/.
▶ The I2C device drivers are located throughout drivers/, depending on the

framework used to expose the devices (e.g. drivers/input/ for input devices).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/437

https://elixir.bootlin.com/linux/latest/source/drivers/i2c/
https://elixir.bootlin.com/linux/latest/source/drivers/i2c/busses/
https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/drivers/input/

Registering an I2C device driver

▶ Like all bus subsystems, the I2C subsystem defines a struct i2c_driver that
inherits from struct device_driver, and which must be instantiated and
registered by each I2C device driver.

• As usual, this structure points to the ->probe() and ->remove() functions.
• It also contains a legacy id_table, used for non-DT based probing of I2C devices.

▶ The i2c_add_driver() and i2c_del_driver() functions are used to
register/unregister the driver.

▶ If the driver doesn’t do anything else in its init()/exit() functions, it is advised
to use the module_i2c_driver() macro instead.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/437

https://elixir.bootlin.com/linux/latest/ident/i2c_driver
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/i2c_add_driver
https://elixir.bootlin.com/linux/latest/ident/i2c_del_driver
https://elixir.bootlin.com/linux/latest/ident/module_i2c_driver

Registering an I2C device driver: example
static const struct i2c_device_id adxl345_i2c_id[] = {

{ "adxl345", ADXL345 },
{ "adxl375", ADXL375 },
{ }

};

MODULE_DEVICE_TABLE(i2c, adxl345_i2c_id);

static const struct of_device_id adxl345_of_match[] = {
{ .compatible = "adi,adxl345" },
{ .compatible = "adi,adxl375" },
{ },

};

MODULE_DEVICE_TABLE(of, adxl345_of_match);

static struct i2c_driver adxl345_i2c_driver = {
.driver = {

.name = "adxl345_i2c",

.of_match_table = adxl345_of_match,
},
.probe = adxl345_i2c_probe,
.remove = adxl345_i2c_remove,
.id_table = adxl345_i2c_id,

};

module_i2c_driver(adxl345_i2c_driver);

From drivers/iio/accel/adxl345_i2c.c
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/437

https://elixir.bootlin.com/linux/latest/source/drivers/iio/accel/adxl345_i2c.c

Registering an I2C device: non-DT

▶ On non-DT platforms, the struct i2c_board_info structure allows to describe
how an I2C device is connected to a board.

▶ Such structures are normally defined with the I2C_BOARD_INFO() helper macro.
• Takes as argument the device name and the slave address of the device on the bus.

▶ An array of such structures is registered on a per-bus basis using
i2c_register_board_info(), when the platform is initialized.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/437

https://elixir.bootlin.com/linux/latest/ident/i2c_board_info
https://elixir.bootlin.com/linux/latest/ident/I2C_BOARD_INFO
https://elixir.bootlin.com/linux/latest/ident/i2c_register_board_info

Registering an I2C device, non-DT example

static struct i2c_board_info __initdata em7210_i2c_devices[] = {
{

I2C_BOARD_INFO("rs5c372a", 0x32),
},

};

...

static void __init em7210_init_machine(void)
{

register_iop32x_gpio();
platform_device_register(&em7210_serial_device);
platform_device_register(&iop3xx_i2c0_device);
platform_device_register(&iop3xx_i2c1_device);
platform_device_register(&em7210_flash_device);
platform_device_register(&iop3xx_dma_0_channel);
platform_device_register(&iop3xx_dma_1_channel);

i2c_register_board_info(0, em7210_i2c_devices,
ARRAY_SIZE(em7210_i2c_devices));

}

From arch/arm/mach-iop32x/em7210.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/437

https://elixir.bootlin.com/linux/latest/source/arch/arm/mach-iop32x/em7210.c

Registering an I2C device, in the DT

▶ In the Device Tree, the I2C controller device is typically defined in the .dtsi file
that describes the processor.

• Normally defined with status = "disabled".
▶ At the board/platform level:

• the I2C controller device is enabled (status = "okay")
• the I2C bus frequency is defined, using the clock-frequency property.
• the I2C devices on the bus are described as children of the I2C controller node,

where the reg property gives the I2C slave address on the bus.
▶ See the binding for the corresponding driver for a specification of the expected DT

properties. Example: Documentation/devicetree/bindings/i2c/i2c-omap.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/437

https://kernel.org/doc/Documentation/devicetree/bindings/i2c/i2c-omap.txt

Registering an I2C device, DT example (1/2)

Definition of the I2C controller
i2c0: i2c@01c2ac00 {

compatible = "allwinner,sun7i-a20-i2c",
"allwinner,sun4i-a10-i2c";

reg = <0x01c2ac00 0x400>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&apb1_gates 0>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;

};

From arch/arm/boot/dts/allwinner/sun7i-a20.dtsi

#address-cells: number of 32-bit values needed to encode the address fields
#size-cells: dimension of address values
See details in https://elinux.org/Device_Tree_Usage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/437

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/allwinner/sun7i-a20.dtsi
https://elinux.org/Device_Tree_Usage

Registering an I2C device, DT example (2/2)

Definition of the I2C device
&i2c0 {

pinctrl-names = "default";
pinctrl-0 = <&i2c0_pins_a>;
status = "okay";

axp209: pmic@34 {
compatible = "x-powers,axp209";
reg = <0x34>;
interrupt-parent = <&nmi_intc>;
interrupts = <0 IRQ_TYPE_LEVEL_LOW>;

interrupt-controller;
#interrupt-cells = <1>;

};
};

From arch/arm/boot/dts/allwinner/sun7i-a20-olinuxino-micro.dts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/437

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/allwinner/sun7i-a20-olinuxino-micro.dts

probe() and remove()

▶ The ->probe() function is responsible for initializing the device and registering it
in the appropriate kernel framework. It receives as argument:

• An struct i2c_client pointer, which represents the I2C device itself. This
structure inherits from struct device.

• On older kernels (< v6.4), ->probe() was taking a second (unused) argument, the
removal of this other argument implied the use of another probe function for some
kernel releases, called ->probe_new().

▶ The ->remove() function is responsible for unregistering the device from the
kernel framework and shut it down. It receives as argument:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/437

https://elixir.bootlin.com/linux/latest/ident/i2c_client
https://elixir.bootlin.com/linux/latest/ident/device

Probe example

static int da311_probe(struct i2c_client *client)
{

struct iio_dev *indio_dev; // framework structure
da311_data *data; // per device structure
...
// Allocate framework structure with per device struct inside
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
data = iio_priv(indio_dev);
data->client = client;
i2c_set_clientdata(client, indio_dev);
// Prepare device and initialize indio_dev
...
// Register device to framework
ret = iio_device_register(indio_dev);
...
return ret;

}

From drivers/iio/accel/da311.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/437

https://elixir.bootlin.com/linux/latest/source/drivers/iio/accel/da311.c

Remove example

static int da311_remove(struct i2c_client *client)
{

struct iio_dev *indio_dev = i2c_get_clientdata(client);
// Unregister device from framework
iio_device_unregister(indio_dev);
return da311_enable(client, false);

}

From drivers/iio/accel/da311.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/437

https://elixir.bootlin.com/linux/latest/source/drivers/iio/accel/da311.c

Communicating with the I2C device: raw API

The most basic API to communicate with the I2C device provides functions to either
send or receive data:
▶ Send a buf to the I2C device with:

int i2c_master_send(const struct i2c_client *client, const char *buf, int count);

▶ Receive a count bytes from the I2C device and save them in buf with:

int i2c_master_recv(const struct i2c_client *client, char *buf, int count);

Both functions return a negative error number in case of failure, otherwise the number
of transmitted bytes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/437

Communicating with the I2C device: message transfer

The message transfer API allows to describe transfers that consists of several
messages, with each message being a transaction in one direction:

int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num);

▶ The struct i2c_adapter pointer can be found by using client->adapter

▶ The struct i2c_msg structure defines the length, location, and direction of the
message.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/437

https://elixir.bootlin.com/linux/latest/ident/i2c_adapter
https://elixir.bootlin.com/linux/latest/ident/i2c_msg

I2C: message transfer example

static int st1232_ts_read_data(struct st1232_ts_data *ts)
{

...
struct i2c_client *client = ts->client;
struct i2c_msg msg[2];
int error;
...
u8 start_reg = ts->chip_info->start_reg;
u8 *buf = ts->read_buf;

/* read touchscreen data */
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &start_reg;

msg[1].addr = ts->client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = ts->read_buf_len;
msg[1].buf = buf;

error = i2c_transfer(client->adapter, msg, 2);
...

}

From drivers/input/touchscreen/st1232.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/437

https://elixir.bootlin.com/linux/latest/source/drivers/input/touchscreen/st1232.c

SMBus calls
▶ SMBus is a subset of the I2C protocol.
▶ It defines a standard set of transactions, such as reading/writing from a

register-like interface.
▶ Linux provides SMBus functions that should preferably be used instead of the raw

API with devices supporting SMBus.
▶ Such a driver will be usable with both SMBus and I2C adapters

• SMBus adapters cannot send raw I2C commands
• I2C adapters will receive an SMBus-like command crafted by the core

▶ Example: the i2c_smbus_read_byte_data() function allows to read one byte of
data from a device “register”.

• It does the following operations:
S Addr Wr [A] Comm [A] Sr Addr Rd [A] [Data] NA P

• Which means it first writes a one byte data command (Comm, which is the
“register” address), and then reads back one byte of data ([Data]).

▶ See i2c/smbus-protocol for details.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/437

https://elixir.bootlin.com/linux/latest/ident/i2c_smbus_read_byte_data
https://www.kernel.org/doc/html/latest/i2c/smbus-protocol.html

List of SMBus functions

▶ Read/write one byte
• s32 i2c_smbus_read_byte(const struct i2c_client *client);
• s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value);

▶ Write a command byte, and read or write one byte
• s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command);
• s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command, u8 value);

▶ Write a command byte, and read or write one word
• s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command);
• s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command, u16 value);

▶ Write a command byte, and read or write a block of data (max 32 bytes)
• s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command, u8 *values);
• s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command, u8 length, const u8 *values);

▶ Write a command byte, and read or write a block of data (no limit)
• s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command, u8 length, u8 *values);
• s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command, u8 length, const u8 *values);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/437

I2C functionality

▶ Not all I2C controllers support all functionalities.
▶ The I2C controller drivers therefore tell the I2C core which functionalities they

support.
▶ An I2C device driver must check that the functionalities they need are provided by

the I2C controller in use on the system.
▶ The i2c_check_functionality() function allows to make such a check.
▶ Examples of functionalities: I2C_FUNC_I2C to be able to use the raw I2C

functions, I2C_FUNC_SMBUS_BYTE_DATA to be able to use SMBus commands to
write a command and read/write one byte of data.

▶ See include/uapi/linux/i2c.h for the full list of existing functionalities.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/437

https://elixir.bootlin.com/linux/latest/ident/i2c_check_functionality
https://elixir.bootlin.com/linux/latest/ident/I2C_FUNC_I2C
https://elixir.bootlin.com/linux/latest/ident/I2C_FUNC_SMBUS_BYTE_DATA
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/i2c.h

References

▶ https://en.wikipedia.org/wiki/I2C, general presentation of the I2C protocol
▶ i2c/, details about Linux support for I2C

• i2c/writing-clients
How to write I2C kernel device drivers

• i2c/dev-interface
How to write I2C user-space device drivers

• i2c/instantiating-devices
How to instantiate devices

• i2c/smbus-protocol
Details on the SMBus functions

• i2c/functionality
How the functionality mechanism works

▶ See also Luca Ceresoli’s introduction to I2C (slides, video).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/437

https://en.wikipedia.org/wiki/I2C
https://www.kernel.org/doc/html/latest/i2c/
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/instantiating-devices.html
https://www.kernel.org/doc/html/latest/i2c/smbus-protocol.html
https://www.kernel.org/doc/html/latest/i2c/functionality.html
https://bootlin.com/pub/conferences/2022/elce/ceresoli-basics-of-i2c-on-linux/ceresoli-basics-of-i2c-on-linux.pdf
https://www.youtube.com/watch?v=g9-wgdesvwA

Practical lab - Communicate with the Nunchuk

▶ Explore the content of /dev and /sys and the
devices available on the embedded hardware
platform.

▶ Implement a driver that registers as an I2C
driver.

▶ Communicate with the Nunchuk and extract
data from it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/437

Kernel frameworks for device drivers

Kernel frameworks for
device drivers

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/437

Kernel and Device Drivers

In Linux, a driver is always interfacing with:
▶ a framework that allows the driver to expose the

hardware features to user space applications.
▶ a bus infrastructure, part of the device model, to

detect/communicate with the hardware.
This section focuses on the kernel frameworks, while the bus
infrastructure was covered earlier in this training.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/437

Kernel frameworks for device drivers

User space vision of devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/437

Types of devices
Under Linux, there are essentially four types of devices:
▶ Network devices. They are represented as network interfaces, visible in user

space using ip a

▶ Block devices. They are used to provide user space applications access to raw
storage devices (hard disks, USB keys). They are visible to the applications as
device files in /dev.

▶ Character devices. They are used to provide user space applications access to all
other types of devices (input, sound, graphics, serial, etc.). They are also visible
to the applications as device files in /dev.

▶ Sysfs devices. They don’t have any of the above user space interfaces, only a
representation in sysfs. ”Internal” device drivers fall under this (e.g. pinctrl), but
also some user-space accessible devices. E.g. gpio (deprecated), IIO (Industrial
I/O).

→ Most devices are character devices, so we will study these in more details.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/437

Major and minor numbers

▶ Within the kernel, all block and character devices are identified using a major and
a minor number.

▶ The major number typically indicates the family of the device.
▶ The minor number allows drivers to distinguish the various devices they manage.
▶ Some major numbers are statically allocated, and identical across all Linux

systems.
▶ Since approximately 2016, new frameworks use dynamically allocated major

numbers when possible.
▶ Minor numbers are almost always (partially) dynamically allocated by the

framework itself. Allocation happens in order of enumeration of the devices.
▶ Pre-defined values, ranges and rules can be found in admin-guide/devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/437

https://www.kernel.org/doc/html/latest/admin-guide/devices.html

Devices: everything is a file

▶ A very important UNIX design decision was to represent most system objects as
files

▶ It allows applications to manipulate all system objects with the normal file API
(open, read, write, close, etc.)

▶ So, devices had to be represented as files to the applications
▶ This is done through a special artifact called a device file
▶ It is a special type of file, that associates a file name visible to user space

applications to the triplet (type, major, minor) that the kernel understands
▶ All device files are by convention stored in the /dev directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/437

Device files examples

Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda /dev/sda1 /dev/sda2 /dev/sdc1 /dev/zero
brw-rw---- 1 root disk 8, 0 2011-05-27 08:56 /dev/sda
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
brw-rw---- 1 root disk 8, 32 2011-05-27 08:56 /dev/sdc
crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1
crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0
crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a serial port
int fd;
fd = open("/dev/ttyS0", O_RDWR);
write(fd, "Hello", 5);
close(fd);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/437

Creating device files

▶ Before Linux 2.6.32, on basic Linux systems, the device files had to be created
manually using the mknod command

• mknod /dev/<device> [c|b] major minor
• Needed root privileges
• Coherency between device files and devices handled by the kernel was left to the

system developer
▶ The devtmpfs virtual filesystem can be mounted on /dev and contains all the

devices registered to kernel frameworks. The CONFIG_DEVTMPFS_MOUNT kernel
configuration option makes the kernel mount it automatically at boot time, except
when booting on an initramfs.

▶ devtmpfs can be supplemented by userspace tools like udev or mdev to adjust
permission/ownership, load kernel modules automatically and create symbolic
links to devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

Kernel frameworks for device drivers

Character drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/437

A character driver in the kernel

▶ From the point of view of an application, a character device is essentially a file.
▶ Character device drivers therefore implement operations that let applications

think the device is a file.
▶ In order to achieve this, a character driver implements the operations it wants

from the struct file_operations structure: read, write, ioctl, etc.
▶ The Linux filesystem layer will ensure that the driver’s operations are called when

a user space application makes the corresponding system call.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/437

https://elixir.bootlin.com/linux/latest/ident/file_operations

From user space to the kernel: character devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/437

File operations

Here are the most important operations for a character driver, from the definition of
struct file_operations:
struct file_operations {

struct module *owner;
ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,

size_t, loff_t *);
long (*unlocked_ioctl) (struct file *, unsigned int,

unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);
...

};

Many operations exist, they are all optional.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/437

https://elixir.bootlin.com/linux/latest/ident/file_operations

open() and release()

▶ int foo_open(struct inode *i, struct file *f)

• Called when user space opens the device file.
• Only implement this function when you do something special with the device

at open() time.
• struct inode is a structure that uniquely represents a file in the filesystem (be it a

regular file, a directory, a symbolic link, a character or block device)
• struct file is a structure created every time a file is opened. Several file structures

can point to the same inode structure.
Contains information like the current position, the opening mode, etc.
Has a void *private_data pointer that one can freely use.
A pointer to the file structure is passed to all other operations

▶ int foo_release(struct inode *i, struct file *f)

• Called when user space closes the file.
• Only implement this function when you do something special with the device

at close() time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/437

https://elixir.bootlin.com/linux/latest/ident/inode
https://elixir.bootlin.com/linux/latest/ident/file
https://elixir.bootlin.com/linux/latest/ident/file

read() and write()

▶ ssize_t foo_read(struct file *f, char __user *buf, size_t sz, loff_t *off)

• Called when user space uses the read() system call on the device.
• Must read data from the device, write at most sz bytes to the user space buffer buf,

and update the current position in the file off. f is a pointer to the same file
structure that was passed in the open() operation

• Must return the number of bytes read.
0 is usually interpreted by userspace as the end of the file.

• On UNIX, read() operations typically block when there isn’t enough data to read
from the device

▶ ssize_t foo_write(struct file *f, const char __user *buf, size_t sz, loff_t *off)

• Called when user space uses the write() system call on the device
• The opposite of read, must read at most sz bytes from buf, write it to the device,

update off and return the number of bytes written.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/437

Exchanging data with user space 1/3

▶ Kernel code isn’t allowed to directly access user space memory, using memcpy() or
direct pointer dereferencing

• User pointer dereferencing is disabled by default to make it harder to exploit
vulnerabilities.

• If the address passed by the application was invalid, the kernel could segfault.
• Never trust user space. A malicious application could pass a kernel address which

you could overwrite with device data (read case), or which you could dump to the
device (write case).

• Doing so does not work on some architectures anyway.
▶ To keep the kernel code portable, secure, and have proper error handling, your

driver must use special kernel functions to exchange data with user space.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/437

https://elixir.bootlin.com/linux/latest/ident/memcpy

Exchanging data with user space 2/3

▶ A single value
• get_user(v, p);

The kernel variable v gets the value pointed by the user space pointer p
• put_user(v, p);

The value pointed by the user space pointer p is set to the contents of the kernel
variable v.

▶ A buffer
• unsigned long copy_to_user(void __user *to, const void *from,

unsigned long n);
• unsigned long copy_from_user(void *to, const void __user *from,

unsigned long n);

▶ The return value must be checked. Zero on success, non-zero on failure. If
non-zero, the convention is to return -EFAULT.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/437

https://elixir.bootlin.com/linux/latest/ident/EFAULT

Exchanging data with user space 3/3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/437

Zero copy access to user memory

▶ Having to copy data to or from an intermediate kernel buffer can become
expensive when the amount of data to transfer is large (video).

▶ Zero copy options are possible:
• mmap() system call to allow user space to directly access memory mapped I/O space.

See our mmap() chapter.
• get_user_pages() and related functions to get a mapping to user pages without

having to copy them.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/437

https://elixir.bootlin.com/linux/latest/ident/get_user_pages

unlocked_ioctl()

▶ long unlocked_ioctl(struct file *f, unsigned int cmd, unsigned long arg)

• Associated to the ioctl() system call.
• Called unlocked because it didn’t hold the Big Kernel Lock (gone now).
• Allows to extend the driver capabilities beyond the limited read/write API.
• For example: changing the speed of a serial port, setting video output format,

querying a device serial number... Used extensively in the V4L2 (video) and ALSA
(sound) driver frameworks.

• cmd is a number identifying the operation to perform.
See driver-api/ioctl for the recommended way of choosing cmd numbers.

• arg is the optional argument passed as third argument of the ioctl() system call.
Can be an integer, an address, etc.

• The semantic of cmd and arg is driver-specific.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/437

https://www.kernel.org/doc/html/latest/driver-api/ioctl.html

ioctl() example: kernel side
#include <linux/phantom.h>

static long phantom_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)

{
struct phm_reg r;
void __user *argp = (void __user *)arg;

switch (cmd) {
case PHN_SET_REG:

if (copy_from_user(&r, argp, sizeof(r)))
return -EFAULT;

/* Do something */
break;

...
case PHN_GET_REG:

if (copy_to_user(argp, &r, sizeof(r)))
return -EFAULT;

/* Do something */
break;

...
default:

return -ENOTTY;
}

return 0;
}

Selected excerpt from drivers/misc/phantom.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/437

https://elixir.bootlin.com/linux/latest/source/drivers/misc/phantom.c

Ioctl() Example: Application Side

#include <linux/phantom.h>

int main(void)
{

int fd, ret;
struct phm_reg reg;

fd = open("/dev/phantom");
assert(fd > 0);

reg.field1 = 42;
reg.field2 = 67;

ret = ioctl(fd, PHN_SET_REG, ®);
assert(ret == 0);

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/437

Kernel frameworks for device drivers

The concept of kernel frameworks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/437

Beyond character drivers: kernel frameworks

▶ Many device drivers are not implemented directly as character drivers
▶ They are implemented under a framework, specific to a given device type

(framebuffer, V4L, serial, etc.)
• The framework allows to factorize the common parts of drivers for the same type of

devices
• From user space, they are still seen as character devices by the applications
• The framework allows to provide a coherent user space interface (ioctl, etc.) for

every type of device, regardless of the driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/437

Example: Some Kernel Frameworks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/437

Example: Framebuffer Framework

▶ Kernel option CONFIG_FB
• menuconfig FB

tristate "Support for frame buffer devices"

▶ Implemented in C files in drivers/video/fbdev/core/
▶ Defines the user/kernel API

• include/uapi/linux/fb.h (constants and structures)
▶ Defines the set of operations a framebuffer driver must implement and helper

functions for the drivers
• struct fb_ops
• include/linux/fb.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_FB
https://elixir.bootlin.com/linux/latest/source/drivers/video/fbdev/core/
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/fb.h
https://elixir.bootlin.com/linux/latest/ident/fb_ops
https://elixir.bootlin.com/linux/latest/source/include/linux/fb.h

Framebuffer driver operations
Here are the operations a framebuffer driver can or must implement, and define them in a
struct fb_ops structure (excerpt from drivers/video/fbdev/skeletonfb.c)
static struct fb_ops xxxfb_ops = {

.owner = THIS_MODULE,

.fb_open = xxxfb_open,

.fb_read = xxxfb_read,

.fb_write = xxxfb_write,

.fb_release = xxxfb_release,

.fb_check_var = xxxfb_check_var,

.fb_set_par = xxxfb_set_par,

.fb_setcolreg = xxxfb_setcolreg,

.fb_blank = xxxfb_blank,

.fb_pan_display = xxxfb_pan_display,

.fb_fillrect = xxxfb_fillrect, /* Needed !!! */

.fb_copyarea = xxxfb_copyarea, /* Needed !!! */

.fb_imageblit = xxxfb_imageblit, /* Needed !!! */

.fb_cursor = xxxfb_cursor, /* Optional !!! */

.fb_rotate = xxxfb_rotate,

.fb_sync = xxxfb_sync,

.fb_ioctl = xxxfb_ioctl,

.fb_mmap = xxxfb_mmap,
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/437

https://elixir.bootlin.com/linux/latest/ident/fb_ops
https://elixir.bootlin.com/linux/latest/source/drivers/video/fbdev/skeletonfb.c

Framebuffer driver code

▶ In the probe() function, registration of the framebuffer device and operations
static int xxxfb_probe (struct pci_dev *dev, const struct pci_device_id *ent)
{

struct fb_info *info;
[...]
info = framebuffer_alloc(sizeof(struct xxx_par), device);
[...]
info->fbops = &xxxfb_ops;
[...]
if (register_framebuffer(info) < 0)

return -EINVAL;
[...]

}

▶ register_framebuffer() will create a new character device in devtmpfs that can
be used by user space applications with the generic framebuffer API.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/437

https://elixir.bootlin.com/linux/latest/ident/register_framebuffer

Kernel frameworks for device drivers

Device-managed allocations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/437

Device managed allocations

▶ The probe() function is typically responsible for allocating a significant number
of resources: memory, mapping I/O registers, registering interrupt handlers, etc.

▶ These resource allocations have to be properly freed:
• In the probe() function, in case of failure
• In the remove() function

▶ This required a lot of failure handling code that was rarely tested
▶ To solve this problem, device managed allocations have been introduced.
▶ The idea is to associate resource allocation with the struct device, and

automatically release those resources
• When the device disappears
• When the device is unbound from the driver

▶ Functions prefixed by devm_

▶ See driver-api/driver-model/devres for details

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/437

https://www.kernel.org/doc/html/latest/driver-api/driver-model/devres.html

Device managed allocations: memory allocation example
▶ Normally done with kmalloc(size_t, gfp_t), released with kfree(void *)

▶ Device managed with devm_kmalloc(struct device *, size_t, gfp_t)

Without devm functions
int foo_probe(struct platform_device *pdev)
{

struct foo_t *foo = kmalloc(sizeof(struct foo_t),
GFP_KERNEL);

/* Register to framework, store
* reference to framework structure in foo */

...
if (failure) {

kfree(foo);
return -EBUSY;

}
platform_set_drvdata(pdev, foo);
return 0;

}

void foo_remove(struct platform_device *pdev)
{

struct foo_t *foo = platform_get_drvdata(pdev);
/* Retrieve framework structure from foo

and unregister it */
...
kfree(foo);

}

With devm functions
int foo_probe(struct platform_device *pdev)
{

struct foo_t *foo = devm_kmalloc(&pdev->dev,
sizeof(struct foo_t),
GFP_KERNEL);

/* Register to framework, store
* reference to framework structure in foo */

...
if (failure)

return -EBUSY;
platform_set_drvdata(pdev, foo);
return 0;

}

void foo_remove(struct platform_device *pdev)
{

struct foo_t *foo = platform_get_drvdata(pdev);
/* Retrieve framework structure from foo

and unregister it */
...
/* foo automatically freed */

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/437

Device managed allocations caveats

▶ Cleanup is done when the struct device is cleaned up. There is no reference
counting or anything like that.

▶ Don’t use if the allocated memory is used outside of the device node. E.g. if the
userspace device file is still open after remove.

▶ Be very careful when there are circular references.
▶ ”Why is devm_kzalloc() harmful and what can we do about it”, Laurent

Pinchart, LPC 2022

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/437

https://lpc.events/event/16/contributions/1227/
https://lpc.events/event/16/contributions/1227/

Kernel frameworks for device drivers

Driver data structures and links

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/437

Driver-specific Data Structure

▶ Each framework defines a structure that a device driver must register to be
recognized as a device in this framework

• struct uart_port for serial ports, struct net_device for network devices,
struct fb_info for framebuffers, etc.

▶ In addition to this structure, the driver usually needs to store additional
information about each device

▶ This is typically done
• By subclassing the appropriate framework structure
• By storing a reference to the appropriate framework structure
• Or by including your information in the framework structure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/437

https://elixir.bootlin.com/linux/latest/ident/uart_port
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/fb_info

Driver-specific Data Structure Examples 1/2

▶ i.MX serial driver: struct imx_port is a subclass of struct uart_port
struct imx_port {

struct uart_port port;
struct timer_list timer;
unsigned int old_status;
int txirq, rxirq, rtsirq;
unsigned int have_rtscts:1;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/437

https://elixir.bootlin.com/linux/latest/ident/imx_port
https://elixir.bootlin.com/linux/latest/ident/uart_port

Driver-specific Data Structure Examples 2/2
▶ ds1305 RTC driver: struct ds1305 has a reference to struct rtc_device

struct ds1305 {
struct spi_device *spi;
struct rtc_device *rtc;
[...]

};

static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
{

struct ds1305 *ds1305 = dev_get_drvdata(dev);
[..]

}

▶ rtl8150 network driver: struct rtl8150 has a reference to struct net_device
and is allocated within that framework structure.
struct rtl8150 {

unsigned long flags;
struct usb_device *udev;
struct tasklet_struct tl;
struct net_device *netdev;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/437

https://elixir.bootlin.com/linux/latest/ident/ds1305
https://elixir.bootlin.com/linux/latest/ident/rtc_device
https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/net_device

Links between structures 1/4

▶ The framework structure typically contains a struct device * pointer that the
driver must point to the corresponding struct device

• It’s the relationship between the logical device (for example a network interface) and
the physical device (for example the USB network adapter)

▶ The device structure also contains a void * pointer that the driver can freely use.
• It’s often used to link back the device to the higher-level structure from the

framework.
• It allows, for example, from the struct platform_device structure, to find the

structure describing the logical device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/437

https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/platform_device

Links between structures 2/4

static int serial_imx_probe(struct platform_device *pdev)
{

struct imx_port *sport; /* per device structure */
[...]
sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
[...]
/* setup the link between uart_port and the struct
* device inside the platform_device */

sport->port.dev = &pdev->dev; // Arrow 1
[...]
/* setup the link between the struct device inside
* the platform device to the imx_port structure */

platform_set_drvdata(pdev, sport); // Arrow 2
[...]
uart_add_one_port(&imx_reg, &sport->port);

}

static int serial_imx_remove(struct platform_device *pdev)
{

/* retrieve the imx_port from the platform_device */
struct imx_port *sport = platform_get_drvdata(pdev);
[...]
uart_remove_one_port(&imx_reg, &sport->port);
[...]

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/437

Links between structures 3/4

static int ds1305_probe(struct spi_device *spi)
{

struct ds1305 *ds1305;

[...]

/* set up driver data */
ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
if (!ds1305)

return -ENOMEM;
ds1305->spi = spi; // Arrow 1
spi_set_drvdata(spi, ds1305); // Arrow 2

[...]

ds1305->rtc = devm_rtc_allocate_device(&spi->dev);
// Arrows 3 and 4

[...]
}

static int ds1305_remove(struct spi_device *spi)
{

struct ds1305 *ds1305 = spi_get_drvdata(spi);

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/437

Links between structures 4/4
static int rtl8150_probe(struct usb_interface *intf,

const struct usb_device_id *id)
{

struct usb_device *udev = interface_to_usbdev(intf);
rtl8150_t *dev;
struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));
dev = netdev_priv(netdev);

[...]

dev->udev = udev; // Arrow 1
dev->netdev = netdev; // Arrow 2

[...]

usb_set_intfdata(intf, dev); // Arrow 3
SET_NETDEV_DEV(netdev, &intf->dev); // Arrow 4

[...]
}

static void rtl8150_disconnect(struct usb_interface *intf)
{

rtl8150_t *dev = usb_get_intfdata(intf);

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/437

The input subsystem

The input subsystem

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/437

What is the input subsystem?

▶ The input subsystem takes care of all the input events coming from the human
user.

▶ Initially written to support the USB HID (Human Interface Device) devices, it
quickly grew up to handle all kinds of inputs (using USB or not): keyboards, mice,
joysticks, touchscreens, etc.

▶ The input subsystem is split in two parts:
• Device drivers: they talk to the hardware (for example via USB), and provide

events (keystrokes, mouse movements, touchscreen coordinates) to the input core
• Event handlers: they get events from drivers and pass them where needed via

various interfaces (most of the time through evdev)
▶ In user space it is usually used by the graphic stack such as X.Org, Wayland or

Android’s InputManager.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/437

Input subsystem diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/437

Input subsystem overview

▶ Kernel option CONFIG_INPUT
• menuconfig INPUT

tristate "Generic input layer (needed for keyboard, mouse, ...)"

▶ Implemented in drivers/input/
• input.c, input-polldev.c, evdev.c...

▶ Defines the user/kernel API
• include/uapi/linux/input.h

▶ Defines the set of operations an input driver must implement and helper functions
for the drivers

• struct input_dev for the device driver part
• struct input_handler for the event handler part
• include/linux/input.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INPUT
https://elixir.bootlin.com/linux/latest/source/drivers/input/
https://elixir.bootlin.com/linux/latest/source/drivers/input/input.c
https://elixir.bootlin.com/linux/latest/source/drivers/input/input-polldev.c
https://elixir.bootlin.com/linux/latest/source/drivers/input/evdev.c
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/input.h
https://elixir.bootlin.com/linux/latest/ident/input_dev
https://elixir.bootlin.com/linux/latest/ident/input_handler
https://elixir.bootlin.com/linux/latest/source/include/linux/input.h

Input subsystem API 1/3

An input device is described by a very long struct input_dev structure, an excerpt is:
struct input_dev {

const char *name;
[...]
struct input_id id;
[...]
unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
[...]
int (*getkeycode)(struct input_dev *dev,

struct input_keymap_entry *ke);
[...]
int (*open)(struct input_dev *dev);
[...]
int (*event)(struct input_dev *dev, unsigned int type,

unsigned int code, int value);
[...]

};

Before being used, this structure must be allocated and initialized, typically with:
struct input_dev *devm_input_allocate_device(struct device *dev);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/437

https://elixir.bootlin.com/linux/latest/ident/input_dev

Input subsystem API 2/3

▶ Depending on the type of events that will be generated, the input bit fields evbit
and keybit must be configured: For example, for a button we only generate
EV_KEY type events, and from these only BTN_0 events code:

set_bit(EV_KEY, myinput_dev.evbit);
set_bit(BTN_0, myinput_dev.keybit);

▶ Once the input device is allocated and filled, the function to register it is:
int input_register_device(struct input_dev *);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/437

https://elixir.bootlin.com/linux/latest/ident/EV_KEY
https://elixir.bootlin.com/linux/latest/ident/BTN_0

Input subsystem API 3/3

The events are sent by the driver to the event handler using
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)

▶ The event types are documented in input/event-codes

▶ An event is composed by one or several input data changes (packet of input data
changes) such as the button state, the relative or absolute position along an axis,
etc..

▶ The input subsystem provides other wrappers such as:
• input_report_key()
• input_report_abs()

After submitting potentially multiple events, the input core must be notified by calling:

void input_sync(struct input_dev *dev)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/437

https://www.kernel.org/doc/html/latest/input/event-codes.html
https://elixir.bootlin.com/linux/latest/ident/input_report_key
https://elixir.bootlin.com/linux/latest/ident/input_report_abs

Example from drivers/hid/usbhid/usbmouse.c

static void usb_mouse_irq(struct urb *urb)
{

struct usb_mouse *mouse = urb->context;
signed char *data = mouse->data;
struct input_dev *dev = mouse->dev;
...

input_report_key(dev, BTN_LEFT, data[0] & 0x01);
input_report_key(dev, BTN_RIGHT, data[0] & 0x02);
input_report_key(dev, BTN_MIDDLE, data[0] & 0x04);
input_report_key(dev, BTN_SIDE, data[0] & 0x08);
input_report_key(dev, BTN_EXTRA, data[0] & 0x10);

input_report_rel(dev, REL_X, data[1]);
input_report_rel(dev, REL_Y, data[2]);
input_report_rel(dev, REL_WHEEL, data[3]);

input_sync(dev);
...

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/437

Polling input devices

▶ The input subsystem provides an API to support simple input devices that do not
raise interrupts but have to be periodically scanned or polled to detect changes in
their state.

▶ Setting up polling is done using input_setup_polling():
int input_setup_polling(struct input_dev *dev, void (*poll_fn)(struct input_dev *dev));

▶ poll_fn is the function that will be called periodically.
▶ The polling interval can be set using input_set_poll_interval() or

input_set_min_poll_interval() and input_set_max_poll_interval()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/437

https://elixir.bootlin.com/linux/latest/ident/input_setup_polling
https://elixir.bootlin.com/linux/latest/ident/input_set_poll_interval
https://elixir.bootlin.com/linux/latest/ident/input_set_min_poll_interval
https://elixir.bootlin.com/linux/latest/ident/input_set_max_poll_interval

evdev user space interface

▶ The main user space interface to input devices is the event interface
▶ Each input device is represented as a /dev/input/event<X> character device
▶ A user space application can use blocking and non-blocking reads, but also

select() (to get notified of events) after opening this device.
▶ Each read will return struct input_event structures of the following format:

struct input_event {
struct timeval time;
unsigned short type;
unsigned short code;
unsigned int value;

};

▶ A very useful application for input device testing is evtest, from
https://cgit.freedesktop.org/evtest/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/437

https://elixir.bootlin.com/linux/latest/ident/input_event
https://cgit.freedesktop.org/evtest/

Practical lab - Expose the Nunchuk to user space

▶ Extend the Nunchuk driver to expose the
Nunchuk features to user space applications, as
an input device.

▶ Test the operation of the Nunchuk using
evtest

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/437

Memory Management

Memory Management

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/437

Physical and virtual memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/437

Virtual memory organization

▶ The top quarter reserved for kernel-space
• Contains kernel code and core data structures
• Allocations for loading modules
• All kernel physical mappings
• Identical in all address spaces

▶ The lower part is a per user process exclusive mapping
• Process code and data (program, stack, ...)
• Memory-mapped files
• Each process has its own address space!

▶ The exact virtual mapping in-use is displayed in the
kernel log early at boot time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/437

Physical/virtual memory mapping on 32-bit systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/437

32-bit systems limitations

▶ Only less than 1GB memory addressable directly through kernel virtual addresses
▶ If more physical memory is present on the platform, part of the memory will not

be accessible by kernel space, but can be used by user space
▶ To allow the kernel to access more physical memory:

• Change the 3GB/1GB memory split to 2GB/2GB or 1GB/3GB (CONFIG_VMSPLIT_2G
or CONFIG_VMSPLIT_1G) ⇒ reduce total user memory available for each process

• Activate highmem support if available for your architecture:
Allows kernel to map parts of its non-directly accessible memory
Mapping must be requested explicitly
Limited addresses ranges reserved for this usage

▶ See Arnd Bergmann’s 4GB by 4GB split presentation (video and slides) at Linaro
Connect virtual 2020.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VMSPLIT_2G
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VMSPLIT_1G)
https://resources.linaro.org/en/resource/TXkzgNDFp3HiJKdfQjbssL

Physical/virtual memory mapping on 64-bit systems (4kiB-pages)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/437

User space virtual address space

▶ When a process
starts, the executable
code is loaded in
RAM and mapped
into the process
virtual address space.

▶ During execution,
additional mappings
can be created:

• Memory
allocations

• Memory mapped
files

• mmap’ed areas
• ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/437

Userspace memory allocations

▶ Userspace mappings can target the full memory
▶ When allocated, memory may not be physically allocated:

• Kernel uses demand fault paging to allocate the physical page (the physical page is
allocated when access to the virtual address generates a page fault)

• ... or may have been swapped out, which also induces a page fault
See the mlock/mlockall system calls for workarounds

▶ User space memory allocation is allowed to over-commit memory (more than
available physical memory) ⇒ can lead to out of memory situations.

• Can be prevented with the use of /proc/sys/vm/overcommit_*
▶ OOM killer kicks in and selects a process to kill to retrieve some memory. That’s

better than letting the system freeze.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/437

Kernel memory allocators

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/437

Page allocator

▶ Appropriate for medium-size allocations
▶ A page is usually 4K, but can be made greater in some architectures (sh, mips: 4,

8, 16 or 64 KB, but not configurable in x86 or arm).
▶ Buddy allocator strategy, so only allocations of power of two number of pages are

possible: 1 page, 2 pages, 4 pages, 8 pages, 16 pages, etc.
▶ Typical maximum size is 8192 KB, but it might depend on the kernel

configuration.
▶ The allocated area is contiguous in the kernel virtual address space, but also maps

to physically contiguous pages. It is allocated in the identity-mapped part of the
kernel memory space.

• This means that large areas may not be available or hard to retrieve due to physical
memory fragmentation.

• The Contiguous Memory Allocator (CMA) can be used to reserve a given amount of
memory at boot (see https://lwn.net/Articles/486301/).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/437

https://lwn.net/Articles/486301/

Page allocator API

▶ unsigned long get_zeroed_page(gfp_t gfp_mask)

• Returns the virtual address of a free page, initialized to zero
• gfp_mask: see the next pages for details.

▶ unsigned long __get_free_page(gfp_t gfp_mask)

• Same, but doesn’t initialize the contents
▶ unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)

• Returns the starting virtual address of an area of several contiguous pages in physical
RAM, with order being log2(number_of_pages).Can be computed from the size
with the get_order() function.

▶ void free_page(unsigned long addr)

• Frees one page.
▶ void free_pages(unsigned long addr, unsigned int order)

• Frees multiple pages. Need to use the same order as in allocation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/437

https://elixir.bootlin.com/linux/latest/ident/get_order

Page allocator flags

The most common ones are:
▶ GFP_KERNEL

• Standard kernel memory allocation. The allocation may block in order to find
enough available memory. Fine for most needs, except in interrupt handler context.

▶ GFP_ATOMIC
• RAM allocated from code which is not allowed to block (interrupt handlers or

critical sections). Never blocks, allows to access emergency pools, but can fail if no
free memory is readily available.

▶ Others are defined in include/linux/gfp_types.h.
See also the documentation in core-api/memory-allocation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/437

https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/GFP_ATOMIC
https://elixir.bootlin.com/linux/latest/source/include/linux/gfp_types.h
https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html

SLAB allocator 1/2

▶ The SLAB allocator allows to create caches, which contain a set of objects of the
same size. In English, slab means tile.

▶ The object size can be smaller or greater than the page size
▶ The SLAB allocator takes care of growing or reducing the size of the cache as

needed, depending on the number of allocated objects. It uses the page allocator
to allocate and free pages.

▶ SLAB caches are used for data structures that are present in many instances in
the kernel: directory entries, file objects, network packet descriptors, process
descriptors, etc.

• See /proc/slabinfo

▶ They are rarely used for individual drivers.
▶ See include/linux/slab.h for the API

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/437

https://elixir.bootlin.com/linux/latest/source/include/linux/slab.h

SLAB allocator 2/2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/437

Different SLAB allocators

There are different, but API compatible, implementations of a SLAB allocator in the Linux
kernel. A particular implementation is chosen at configuration time.
▶ CONFIG_SLAB: legacy but now deprecated
▶ CONFIG_SLUB: the default allocator, scaling better and creating less fragmentation than

previous implementations.
▶ CONFIG_SLUB_TINY: configure SLUB to achieve minimal memory footprint, sacrificing

scalability, debugging and other features. Not recommended for systems with more than
16 MB of RAM.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SLAB
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SLUB
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SLUB_TINY

kmalloc allocator
▶ The kmalloc allocator is the general purpose memory allocator in the Linux kernel
▶ For small sizes, it relies on generic SLAB caches, named kmalloc-XXX in

/proc/slabinfo
▶ For larger sizes, it relies on the page allocator
▶ The allocated area is guaranteed to be physically contiguous
▶ The allocated area size is rounded up to the size of the smallest SLAB cache in

which it can fit (while using the SLAB allocator directly allows to have more
flexibility)

▶ It uses the same flags as the page allocator (GFP_KERNEL, GFP_ATOMIC, etc.) with
the same semantics.

▶ Maximum sizes, on x86 and arm (see https://j.mp/YIGq6W):
- Per allocation: 4 MB
- Total allocations: 128 MB

▶ Should be used as the primary allocator unless there is a strong reason to use
another one.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/437

https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/GFP_ATOMIC
https://j.mp/YIGq6W

kmalloc API 1/2

▶ #include <linux/slab.h>

▶ void *kmalloc(size_t size, gfp_t flags);

• Allocate size bytes, and return a pointer to the area (virtual address)
• size: number of bytes to allocate
• flags: same flags as the page allocator

▶ void kfree(const void *objp);

• Free an allocated area
▶ Example: (drivers/infiniband/core/cache.c)

struct ib_port_attr *tprops;
tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
...
kfree(tprops);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/437

https://elixir.bootlin.com/linux/latest/source/drivers/infiniband/core/cache.c

kmalloc API 2/2

▶ void *kzalloc(size_t size, gfp_t flags);

• Allocates a zero-initialized buffer
▶ void *kcalloc(size_t n, size_t size, gfp_t flags);

• Allocates memory for an array of n elements of size size, and zeroes its contents.
▶ void *krealloc(const void *p, size_t new_size, gfp_t flags);

• Changes the size of the buffer pointed by p to new_size, by reallocating a new
buffer and copying the data, unless new_size fits within the alignment of the
existing buffer.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/437

devm_kmalloc functions

Allocations with automatic freeing when the corresponding device or module is
unprobed.
▶ void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp);

▶ void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp);

▶ void *devm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags);

▶ void *devm_kfree(struct device *dev, void *p);

Useful to immediately free an allocated buffer
For use in probe() functions, in which you have access to a struct device structure.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/437

https://elixir.bootlin.com/linux/latest/ident/device

vmalloc allocator
▶ The vmalloc() allocator can be used to obtain memory zones that are contiguous

in the virtual addressing space, but not made out of physically contiguous pages.
▶ The requested memory size is rounded up to the next page (not efficient for small

allocations).
▶ The allocated area is in the kernel space part of the address space, but outside of

the identically-mapped area
▶ Allocations of fairly large areas is possible (almost as big as total available

memory, see https://j.mp/YIGq6W again), since physical memory fragmentation
is not an issue.

▶ Not suitable for DMA purposes.
▶ API in include/linux/vmalloc.h

• void *vmalloc(unsigned long size);

Returns a virtual address
• void vfree(void *addr);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/437

https://elixir.bootlin.com/linux/latest/ident/vmalloc
https://j.mp/YIGq6W
https://elixir.bootlin.com/linux/latest/source/include/linux/vmalloc.h

Kernel memory debugging

▶ KASAN (Kernel Address Sanitizer)
• Dynamic memory error detector, to find use-after-free and out-of-bounds bugs.
• Available on most architectures
• See dev-tools/kasan for details.

▶ KFENCE (Kernel Electric Fence)
• A low overhead alternative to KASAN, trading performance for precision. Meant to

be used in production systems.
• Available on most architectures.
• See dev-tools/kfence for details.

▶ Kmemleak
• Dynamic checker for memory leaks
• This feature is available for all architectures.
• See dev-tools/kmemleak for details.

KASAN and Kmemleak have a significant overhead. Only use them in development!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/437

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html

Kernel memory management: resources
Virtual memory and Linux, Alan Ott and Matt Porter, 2016
Great and much more complete presentation about this topic
https://bit.ly/2Af1G2i (video: https://bit.ly/2Bwwv0C)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/437

https://bit.ly/2Af1G2i
https://bit.ly/2Bwwv0C

I/O Memory

I/O Memory

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/437

Memory-Mapped I/O

▶ Same address bus to address memory and I/O device
registers

▶ Access to the I/O device registers using regular instructions
▶ Most widely used I/O method across the different

architectures supported by Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/437

Requesting I/O memory

▶ Tells the kernel which driver is using which I/O registers
▶ struct resource *request_mem_region(unsigned long start,

unsigned long len, char *name);

▶ void release_mem_region(unsigned long start, unsigned long len);

▶ Allows to prevent other drivers from requesting the same I/O registers, but is
purely voluntary.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/437

/proc/iomem example - ARM 32 bit (BeagleBone Black, Linux 5.11)

40300000-4030ffff : 40300000.sram sram@0
44e00c00-44e00cff : 44e00c00.prm prm@c00
44e00d00-44e00dff : 44e00d00.prm prm@d00
44e00e00-44e00eff : 44e00e00.prm prm@e00
44e00f00-44e00fff : 44e00f00.prm prm@f00
44e01000-44e010ff : 44e01000.prm prm@1000
44e01100-44e011ff : 44e01100.prm prm@1100
44e01200-44e012ff : 44e01200.prm prm@1200
44e07000-44e07fff : 44e07000.gpio gpio@0
44e09000-44e0901f : serial
44e0b000-44e0bfff : 44e0b000.i2c i2c@0
44e10800-44e10a37 : pinctrl-single
44e10f90-44e10fcf : 44e10f90.dma-router dma-router@f90
48024000-48024fff : 48024000.serial serial@0
48042000-480423ff : 48042000.timer timer@0
48044000-480443ff : 48044000.timer timer@0

48046000-480463ff : 48046000.timer timer@0
48048000-480483ff : 48048000.timer timer@0
4804a000-4804a3ff : 4804a000.timer timer@0
4804c000-4804cfff : 4804c000.gpio gpio@0
48060000-48060fff : 48060000.mmc mmc@0
4819c000-4819cfff : 4819c000.i2c i2c@0
481a8000-481a8fff : 481a8000.serial serial@0
481ac000-481acfff : 481ac000.gpio gpio@0
481ae000-481aefff : 481ae000.gpio gpio@0
481d8000-481d8fff : 481d8000.mmc mmc@0
49000000-4900ffff : 49000000.dma edma3_cc
4a100000-4a1007ff : 4a100000.ethernet ethernet@0
4a101200-4a1012ff : 4a100000.ethernet ethernet@0
80000000-9fdfffff : System RAM
80008000-80cfffff : Kernel code
80e00000-80f3d807 : Kernel data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/437

Mapping I/O memory in virtual memory

▶ Load/store instructions work with virtual addresses
▶ To access I/O memory, drivers need to have a virtual address that the processor

can handle, because I/O memory is not mapped by default in virtual memory.
▶ The ioremap function satisfies this need:

#include <linux/io.h>

void __iomem *ioremap(phys_addr_t phys_addr, unsigned long size);
void iounmap(void __iomem *addr);

▶ Caution: check that ioremap() doesn’t return a NULL address!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/437

https://elixir.bootlin.com/linux/latest/ident/ioremap

ioremap()

ioremap(0xAFFEBC00, 4096) = 0xCDEFA000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/437

Managed API

Using request_mem_region() and ioremap() in device drivers is now deprecated. You
should use the below ”managed” functions instead, which simplify driver coding and
error handling:
▶ devm_ioremap(), devm_iounmap()
▶ devm_ioremap_resource()

• Takes care of both the request and remapping operations!
▶ devm_platform_ioremap_resource()

• Takes care of platform_get_resource(), request_mem_region() and ioremap()
• Caution: unlike the other devm_ functions, its first argument is of type

struct platform_device, not a pointer to struct device:

base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))

return PTR_ERR(base);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/437

https://elixir.bootlin.com/linux/latest/ident/request_mem_region
https://elixir.bootlin.com/linux/latest/ident/ioremap
https://elixir.bootlin.com/linux/latest/ident/devm_ioremap
https://elixir.bootlin.com/linux/latest/ident/devm_iounmap
https://elixir.bootlin.com/linux/latest/ident/devm_ioremap_resource
https://elixir.bootlin.com/linux/latest/ident/devm_platform_ioremap_resource
https://elixir.bootlin.com/linux/latest/ident/platform_get_resource
https://elixir.bootlin.com/linux/latest/ident/request_mem_region
https://elixir.bootlin.com/linux/latest/ident/ioremap
https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/device

Accessing MMIO devices: using accessor functions

▶ Directly reading from or writing to addresses returned by ioremap() (pointer
dereferencing) may not work on some architectures.

▶ A family of architecture-independent accessor functions are available covering
most needs.

▶ A few architecture-specific accessor functions also exists.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/437

https://elixir.bootlin.com/linux/latest/ident/ioremap

MMIO access functions

▶ read[b/w/l/q] and write[b/w/l/q] for access to little-endian devices, includes
memory barriers

▶ ioread[8/16/32/64] and iowrite[8/16/32/64] are very similar to read/write
but also work with port I/O (not covered in the course), includes memory barriers

▶ ioread[8/16/32/64]be and iowrite[8/16/32/64]be for access to big-endian
devices, includes memory barriers

▶ __raw_read[b/w/l/q] and __raw_write[b/w/l/q] for raw access: no endianness
conversion, no memory barriers

▶ read[b/w/l/q]_relaxed and write[b/q/l/w]_relaxed for access to
little-endian devices, without memory barriers

▶ All functions work on a void __iomem *

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/437

MMIO access functions summary

Name Device endianness Memory barriers
read/write little yes
ioread/iowrite little yes
ioreadbe/iowritebe big yes
__raw_read/__raw_write native no
read_relaxed/write_relaxed little no

More details at https://docs.kernel.org/driver-api/device-io.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/437

https://docs.kernel.org/driver-api/device-io.html

Ordering

▶ Reads/writes to MMIO-mapped registers of given device are done in program
order

▶ However reads/writes to RAM can be re-ordered between themselves, and
between MMIO-mapped read/writes

▶ Some of the accessor functions include memory barriers to help with this:
• Write operation starts with a write memory barrier which prior writes cannot cross
• Read operation ends with a read memory barrier which guarantees the ordering with

regard to the subsequent reads
▶ Sometimes compiler/CPU reordering is not an issue, in this case the code may be

optimized by dropping the memory barriers, using the raw or relaxed helpers
▶ See Documentation/memory-barriers.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/437

https://elixir.bootlin.com/linux/latest/source/Documentation/memory-barriers.txt

/dev/mem

▶ Used to provide user space applications with direct access to physical addresses.
▶ Usage: open /dev/mem and read or write at given offset. What you read or write

is the value at the corresponding physical address.
▶ Used by applications such as the X server to write directly to device memory.
▶ Easy to use from a shell with the devmem2 program
▶ For security reasons, on x86, arm, arm64, riscv, powerpc, parisc, s390:

• CONFIG_STRICT_DEVMEM restricts /dev/mem to non-RAM addresses (from v5.12)
• CONFIG_IO_STRICT_DEVMEM goes beyond and only allows to access idle I/O ranges

(not appearing in /proc/iomem).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_STRICT_DEVMEM
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_IO_STRICT_DEVMEM

Practical lab - I/O memory and ports

▶ Add UART devices to the board device tree
▶ Access I/O registers to control the device and

send first characters to it.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/437

The misc subsystem

The misc subsystem

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 299/437

Why a misc subsystem?
▶ The kernel offers a large number of frameworks covering a wide range of device

types: input, network, video, audio, etc.
• These frameworks allow to factorize common functionality between drivers and offer

a consistent API to user space applications.
▶ However, there are some devices that really do not fit in any of the existing

frameworks.
• Highly customized devices implemented in a FPGA, or other weird devices for which

implementing a complete framework is not useful.
▶ The drivers for such devices could be implemented directly as raw character

drivers (with cdev_init() and cdev_add()).
▶ But there is a subsystem that makes this work a little bit easier: the misc

subsystem.
• It is really only a thin layer above the character driver API.
• Another advantage is that devices are integrated in the Device Model (device files

appearing in devtmpfs, which you don’t have with raw character devices).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/437

https://elixir.bootlin.com/linux/latest/ident/cdev_init
https://elixir.bootlin.com/linux/latest/ident/cdev_add

Misc subsystem diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/437

Misc subsystem API (1/2)

▶ The misc subsystem API mainly provides two functions, to register and unregister
a single misc device:

• int misc_register(struct miscdevice * misc);
• void misc_deregister(struct miscdevice *misc);

▶ A misc device is described by a struct miscdevice structure:
struct miscdevice {

int minor;
const char *name;
const struct file_operations *fops;
struct list_head list;
struct device *parent;
struct device *this_device;
const char *nodename;
umode_t mode;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/437

https://elixir.bootlin.com/linux/latest/ident/miscdevice

Misc subsystem API (2/2)

The main fields to be filled in struct miscdevice are:
▶ minor, the minor number for the device, or MISC_DYNAMIC_MINOR to get a minor

number automatically assigned.
▶ name, name of the device, which will be used to create the device node if

devtmpfs is used.
▶ fops, pointer to the same struct file_operations structure that is used for

raw character drivers, describing which functions implement the read, write, ioctl,
etc. operations.

▶ parent, pointer to the struct device of the underlying “physical” device
(platform device, I2C device, etc.)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/437

https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://elixir.bootlin.com/linux/latest/ident/MISC_DYNAMIC_MINOR
https://elixir.bootlin.com/linux/latest/ident/file_operations

User space API for misc devices

▶ misc devices are regular character devices
▶ The operations they support in user space depends on the operations the kernel

driver implements:
• The open() and close() system calls to open/close the device.
• The read() and write() system calls to read/write to/from the device.
• The ioctl() system call to call some driver-specific operations.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/437

Practical lab - Output-only serial port driver

▶ Extend the driver started in the previous lab by
registering it into the misc subsystem.

▶ Implement serial output functionality through
the misc subsystem.

▶ Test serial output using user space applications.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/437

Processes, scheduling and interrupts

Processes, scheduling
and interrupts

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/437

Processes, scheduling and interrupts

Processes and scheduling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/437

Process, thread?

▶ Confusion about the terms process, thread and task
▶ In UNIX, a process is created using fork() and is composed of

• An address space, which contains the program code, data, stack, shared libraries, etc.
• A single thread, which is the only entity known by the scheduler.

▶ Additional threads can be created inside an existing process, using
pthread_create()

• They run in the same address space as the initial thread of the process
• They start executing a function passed as argument to pthread_create()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/437

Process, thread: kernel point of view

▶ In kernel space, each thread running in the system is represented by a structure of
type struct task_struct

▶ From a scheduling point of view, it makes no difference between the initial thread
of a process and all additional threads created dynamically using
pthread_create()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/437

https://elixir.bootlin.com/linux/latest/ident/task_struct

Relation between execution mode, address space and context

▶ When speaking about process and thread, these concepts need to be clarified:
• Mode is the level of privilege allowing to perform some operations:

Kernel Mode: in this level CPU can perform any operation allowed by its architecture;
any instruction, any I/O operation, any area of memory accessed.
User Mode: in this level, certain instructions are not permitted (especially those that
could alter the global state of the machine), some memory areas cannot be accessed.

• Linux splits its address space in kernel space and user space
Kernel space is reserved for code running in Kernel Mode.
User space is the place were applications execute (accessible from Kernel Mode).

• Context represents the current state of an execution flow.
The process context can be seen as the content of the registers associated to this
process: execution register, stack register...
The interrupt context replaces the process context when the interrupt handler is
executed.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 310/437

A thread life

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/437

Execution of system calls

The execution of system calls takes place in the context of the thread requesting them.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/437

Processes, scheduling and interrupts

Sleeping

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/437

Sleeping

Sleeping is needed when a process (user space or kernel space) is waiting for data.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/437

How to sleep with a wait queue 1/3
▶ Must declare a wait queue, which will be used to store the list of threads waiting

for an event
▶ Dynamic queue declaration:

• Typically one queue per device managed by the driver
• It’s convenient to embed the wait queue inside a per-device data structure.
• Example from drivers/net/ethernet/marvell/mvmdio.c:

struct orion_mdio_dev {
...
wait_queue_head_t smi_busy_wait;

};
struct orion_mdio_dev *dev;
...
init_waitqueue_head(&dev->smi_busy_wait);

▶ Static queue declaration:
• Using a global variable when a global resource is sufficient
• DECLARE_WAIT_QUEUE_HEAD(module_queue);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/437

https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/marvell/mvmdio.c

How to sleep with a waitqueue 2/3

Several ways to make a kernel process sleep
▶ void wait_event(queue, condition);

• Sleeps until the task is woken up and the given C expression is true. Caution: can’t
be interrupted (can’t kill the user space process!)

▶ int wait_event_killable(queue, condition);

• Can be interrupted, but only by a fatal signal (SIGKILL). Returns -ERESTARTSYS if
interrupted.

▶ int wait_event_interruptible(queue, condition);

• The most common variant
• Can be interrupted by any signal. Returns -ERESTARTSYS if interrupted.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/437

https://elixir.bootlin.com/linux/latest/ident/SIGKILL
https://elixir.bootlin.com/linux/latest/ident/ERESTARTSYS
https://elixir.bootlin.com/linux/latest/ident/ERESTARTSYS

How to sleep with a waitqueue 3/3

▶ int wait_event_timeout(queue, condition, timeout);

• Also stops sleeping when the task is woken up or the timeout expired (a timer is
used).

• Returns 0 if the timeout elapsed, non-zero if the condition was met.
▶ int wait_event_interruptible_timeout(queue, condition, timeout);

• Same as above, interruptible.
• Returns 0 if the timeout elapsed, -ERESTARTSYS if interrupted, positive value if the

condition was met.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/437

https://elixir.bootlin.com/linux/latest/ident/ERESTARTSYS

How to sleep with a waitqueue - Example

sig = wait_event_interruptible(ibmvtpm->wq,
!ibmvtpm->tpm_processing_cmd);

if (sig)
return -EINTR;

From drivers/char/tpm/tpm_ibmvtpm.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/437

https://elixir.bootlin.com/linux/latest/source/drivers/char/tpm/tpm_ibmvtpm.c

Waking up!

Typically done by interrupt handlers when data sleeping processes are waiting for
become available.
▶ wake_up(&queue);

• Wakes up all processes in the wait queue
▶ wake_up_interruptible(&queue);

• Wakes up all processes waiting in an interruptible sleep on the given queue

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/437

Exclusive vs. non-exclusive

▶ wait_event_interruptible() puts a task in a non-exclusive wait.
• All non-exclusive tasks are woken up by wake_up() / wake_up_interruptible()

▶ wait_event_interruptible_exclusive() puts a task in an exclusive wait.
• wake_up() / wake_up_interruptible() wakes up all non-exclusive tasks and only

one exclusive task
• wake_up_all() / wake_up_interruptible_all() wakes up all non-exclusive and all

exclusive tasks
▶ Exclusive sleeps are useful to avoid waking up multiple tasks when only one will

be able to “consume” the event.
▶ Non-exclusive sleeps are useful when the event can “benefit” to multiple tasks.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/437

https://elixir.bootlin.com/linux/latest/ident/wait_event_interruptible
https://elixir.bootlin.com/linux/latest/ident/wake_up
https://elixir.bootlin.com/linux/latest/ident/wake_up_interruptible
https://elixir.bootlin.com/linux/latest/ident/wait_event_interruptible_exclusive
https://elixir.bootlin.com/linux/latest/ident/wake_up
https://elixir.bootlin.com/linux/latest/ident/wake_up_interruptible
https://elixir.bootlin.com/linux/latest/ident/wake_up_all
https://elixir.bootlin.com/linux/latest/ident/wake_up_interruptible_all

Sleeping and waking up - Implementation

The scheduler doesn’t keep evaluating the
sleeping condition!
▶ wait_event(queue, cond);

The process is put in the
TASK_UNINTERRUPTIBLE state.

▶ wake_up(&queue);

All processes waiting in queue are
woken up, so they get scheduled later
and have the opportunity to evaluate
the condition again and go back to
sleep if it is not met.

See include/linux/wait.h for
implementation details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/437

https://elixir.bootlin.com/linux/latest/ident/TASK_UNINTERRUPTIBLE
https://elixir.bootlin.com/linux/latest/source/include/linux/wait.h

How to sleep with completions 1/2
▶ Use wait_for_completion() when no particular condition must be enforced at

the time of the wake-up
• Leverages the power of wait queues
• Simplifies its use
• Highly efficient using low level scheduler facilities

▶ Preparation of the completion structure:
• Static declaration and initialization:

DECLARE_COMPLETION(setup_done);
• Dynamic declaration:

init_completion(&object->setup_done);
• The completion object should get a meaningful name (eg. not just “done”).

▶ Ready to be used by signal consumers and providers as soon as the completion
object is initialized

▶ See include/linux/completion.h for the full API
▶ Internal documentation at scheduler/completion

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/437

https://elixir.bootlin.com/linux/latest/ident/wait_for_completion
https://elixir.bootlin.com/linux/latest/source/include/linux/completion.h
https://www.kernel.org/doc/html/latest/scheduler/completion.html

How to sleep with completions 2/2
▶ Enter a wait state with

void wait_for_completion(struct completion *done)
• All wait_event() flavors are also supported, such as:

wait_for_completion_timeout(),
wait_for_completion_interruptible{,_timeout}(),
wait_for_completion_killable{,_timeout}(), etc

▶ Wake up consumers with
void complete(struct completion *done)

• Several calls to complete() are valid, they will wake up the same number of threads
waiting on this object (acts as a FIFO).

• A single complete_all() call would wake up all present and future threads waiting
on this completion object

▶ Reset the counter with
void reinit_completion(struct completion *done)

• Resets the number of “done” completions still pending
• Mind not to call init_completion() twice, which could confuse the enqueued tasks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/437

https://elixir.bootlin.com/linux/latest/ident/wait_event
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_timeout
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_interruptible{,_timeout}
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_killable{,_timeout}
https://elixir.bootlin.com/linux/latest/ident/complete
https://elixir.bootlin.com/linux/latest/ident/complete_all
https://elixir.bootlin.com/linux/latest/ident/init_completion

Waiting when there is no interrupt

▶ When there is no interrupt mechanism tied to a particular hardware state, it is
tempting to implement a custom busy-wait loop.

• Spoiler alert: this is highly discouraged!
▶ For long lasting pauses, rely on helpers which leverage the system clock

• wait_event() helpers are (also) very useful outside of interrupt situations
• Release the CPU with schedule()

▶ For shorter pauses, use helpers which implement software loops
• msleep()/msleep_interruptible() put the process in sleep for a given amount of

milliseconds
• udelay()/udelay_range() waste CPU cycles in order to save a couple of context

switches for a sub-millisecond period
• cpu_relax() does nothing, but may be used as a way to not being optimized out by

the compiler when busy looping for very short periods

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/437

https://elixir.bootlin.com/linux/latest/ident/wait_event
https://elixir.bootlin.com/linux/latest/ident/schedule
https://elixir.bootlin.com/linux/latest/ident/msleep
https://elixir.bootlin.com/linux/latest/ident/msleep_interruptible
https://elixir.bootlin.com/linux/latest/ident/udelay
https://elixir.bootlin.com/linux/latest/ident/udelay_range
https://elixir.bootlin.com/linux/latest/ident/cpu_relax

Waiting when hardware is involved

▶ When hardware is involved in the waiting process
• but there is no interrupt available
• or because a context switch would be too expensive

▶ Specific polling I/O accessors may be used:
• Exhaustive list in include/linux/iopoll.h

int read[bwlq]_poll[_timeout[_atomic]](addr, val, cond,
delay_us, timeout_us)

addr: I/O memory location
val: Content of the register pointed with
cond: Boolean condition based on val
delay_us: Polling delay between reads
timeout_us: Timeout delay after which the operation fails and returns -ETIMEDOUT

• _atomic variant uses udelay() instead of usleep().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/437

https://elixir.bootlin.com/linux/latest/source/include/linux/iopoll.h
https://elixir.bootlin.com/linux/latest/ident/udelay
https://elixir.bootlin.com/linux/latest/ident/usleep

Processes, scheduling and interrupts

Interrupt Management

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/437

Registering an interrupt handler 1/2
The managed API is recommended:
int devm_request_irq(struct device *dev, unsigned int irq, irq_handler_t handler,

unsigned long irq_flags, const char *devname, void *dev_id);

▶ device for automatic freeing at device or module release time.
▶ irq is the requested IRQ channel. For platform devices, use platform_get_irq()

to retrieve the interrupt number.
▶ handler is a pointer to the IRQ handler function
▶ irq_flags are option masks (see next slide)
▶ devname is the registered name (for /proc/interrupts). For platform drivers,

good idea to use pdev->name which allows to distinguish devices managed by the
same driver (example: 44e0b000.i2c).

▶ dev_id is an opaque pointer. It can typically be used to pass a pointer to a
per-device data structure. It cannot be NULL as it is used as an identifier for
freeing interrupts on a shared line.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/437

https://elixir.bootlin.com/linux/latest/ident/platform_get_irq

Registering an interrupt handler 2/2

Here are the most frequent irq_flags bit values in drivers (can be combined):
▶ IRQF_SHARED: interrupt channel can be shared by several devices.

• When an interrupt is received, all the interrupt handlers registered on the same
interrupt line are called.

• This requires a hardware status register telling whether an IRQ was raised or not.
▶ IRQF_ONESHOT: for use by threaded interrupts (see next slides). Keeping the

interrupt line disabled until the thread function has run.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/437

https://elixir.bootlin.com/linux/latest/ident/IRQF_SHARED
https://elixir.bootlin.com/linux/latest/ident/IRQF_ONESHOT

Interrupt handler constraints

▶ No guarantee in which address space the system will be in when the interrupt
occurs: can’t transfer data to and from user space.

▶ Interrupt handler execution is managed by the CPU, not by the scheduler.
Handlers can’t run actions that may sleep, because there is nothing to resume
their execution. In particular, need to allocate memory with GFP_ATOMIC.

▶ Interrupt handlers are run with all interrupts disabled on the local CPU (see
https://lwn.net/Articles/380931). Therefore, they have to complete their job
quickly enough, to avoiding blocking interrupts for too long.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/437

https://elixir.bootlin.com/linux/latest/ident/GFP_ATOMIC
https://lwn.net/Articles/380931

/proc/interrupts on Raspberry Pi 2 (ARM, Linux 4.19)

CPU0 CPU1 CPU2 CPU3
17: 1005317 0 0 0 ARMCTRL-level 1 Edge 3f00b880.mailbox
18: 36 0 0 0 ARMCTRL-level 2 Edge VCHIQ doorbell
40: 0 0 0 0 ARMCTRL-level 48 Edge bcm2708_fb DMA
42: 427715 0 0 0 ARMCTRL-level 50 Edge DMA IRQ
56: 478426356 0 0 0 ARMCTRL-level 64 Edge dwc_otg, dwc_otg_pcd, dwc_otg_hcd:usb1
80: 411468 0 0 0 ARMCTRL-level 88 Edge mmc0
81: 502 0 0 0 ARMCTRL-level 89 Edge uart-pl011

161: 0 0 0 0 bcm2836-timer 0 Edge arch_timer
162: 10963772 6378711 16583353 6406625 bcm2836-timer 1 Edge arch_timer
165: 0 0 0 0 bcm2836-pmu 9 Edge arm-pmu
FIQ: usb_fiq
IPI0: 0 0 0 0 CPU wakeup interrupts
IPI1: 0 0 0 0 Timer broadcast interrupts
IPI2: 2625198 4404191 7634127 3993714 Rescheduling interrupts
IPI3: 3140 56405 49483 59648 Function call interrupts
IPI4: 0 0 0 0 CPU stop interrupts
IPI5: 2167923 477097 5350168 412699 IRQ work interrupts
IPI6: 0 0 0 0 completion interrupts
Err: 0

Note: interrupt numbers shown on the left-most column are virtual numbers when the Device Tree is
used. The physical interrupt numbers can be found in /sys/kernel/debug/irq/irqs/<nr> files when
CONFIG_GENERIC_IRQ_DEBUGFS=y.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GENERIC_IRQ_DEBUGFS

Interrupt handler prototype

▶ irqreturn_t foo_interrupt(int irq, void *dev_id)

• irq, the IRQ number
• dev_id, the per-device pointer that was passed to devm_request_irq()

▶ Return value
• IRQ_HANDLED: recognized and handled interrupt
• IRQ_NONE: used by the kernel to detect spurious interrupts, and disable the interrupt

line if none of the interrupt handlers has handled the interrupt.
• IRQ_WAKE_THREAD: handler requests to wake the handler thread (see next slides)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/437

https://elixir.bootlin.com/linux/latest/ident/devm_request_irq
https://elixir.bootlin.com/linux/latest/ident/IRQ_HANDLED
https://elixir.bootlin.com/linux/latest/ident/IRQ_NONE
https://elixir.bootlin.com/linux/latest/ident/IRQ_WAKE_THREAD

Typical interrupt handler’s job

▶ Acknowledge the interrupt to the device (otherwise no more interrupts will be
generated, or the interrupt will keep firing over and over again)

▶ Read/write data from/to the device
▶ Wake up any process waiting for such data, typically on a per-device wait queue:

wake_up_interruptible(&device_queue);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/437

Threaded interrupts

The kernel also supports threaded interrupts:
▶ The interrupt handler is executed inside a thread.
▶ Allows to block during the interrupt handler, which is often needed for I2C/SPI

devices as the interrupt handler needs time to communicate with them.
▶ Allows to set a priority for the interrupt handler execution, which is useful for

real-time usage of Linux
int devm_request_threaded_irq(struct device *dev, unsigned int irq,

irq_handler_t handler, irq_handler_t thread_fn,
unsigned long flags, const char *name,
void *dev);

▶ handler, “hard IRQ” handler
▶ thread_fn, executed in a thread

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/437

Top half and bottom half processing

Splitting the execution of interrupt handlers in 2 parts
▶ Top half

• This is the real interrupt handler, which should complete as quickly as possible since
all interrupts are disabled. It takes the data out of the device and if substantial
post-processing is needed, schedule a bottom half to handle it.

▶ Bottom half
• Is the general Linux name for various mechanisms which allow to postpone the

handling of interrupt-related work. Implemented in Linux as: softirqs, tasklets,
threaded handlers or workqueues.

• And yet, the abbreviation ”bh” often means ”softirqs”...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/437

Top half and bottom half diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/437

Softirqs

▶ Softirqs are a form of bottom half processing
▶ The softirqs handlers are executed with all interrupts enabled, and a given softirq

handler can run simultaneously on multiple CPUs
▶ They are executed once all interrupt handlers have completed, before the kernel

resumes scheduling processes, so sleeping is not allowed.
▶ The number of softirqs is fixed in the system, so softirqs are not directly used by

drivers, but by kernel subsystems (network, etc.)
▶ The list of softirqs is defined in include/linux/interrupt.h: HI_SOFTIRQ,

TIMER_SOFTIRQ, NET_TX_SOFTIRQ, NET_RX_SOFTIRQ, BLOCK_SOFTIRQ,
IRQ_POLL_SOFTIRQ, TASKLET_SOFTIRQ, SCHED_SOFTIRQ, HRTIMER_SOFTIRQ,
RCU_SOFTIRQ

▶ HI_SOFTIRQ and TASKLET_SOFTIRQ are used to execute tasklets

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/437

https://elixir.bootlin.com/linux/latest/source/include/linux/interrupt.h
https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TIMER_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/NET_TX_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/NET_RX_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/BLOCK_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/IRQ_POLL_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/SCHED_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/HRTIMER_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/RCU_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ

Example usage of softirqs - NAPI

NAPI = New API
▶ Interface in the Linux kernel used for interrupt mitigation in network drivers
▶ Principle: when the network traffic exceeds a given threshhold (”budget”), disable

network interrupts and consume incoming packets through a polling function,
instead of processing each new packet with an interrupt.

▶ This reduces overhead due to interrupts and yields better network throughput.
▶ The polling function is run by napi_schedule(), which uses NET_RX_SOFTIRQ.
▶ See https://en.wikipedia.org/wiki/New_API for details
▶ See also our commented network driver on

https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/437

https://elixir.bootlin.com/linux/latest/ident/napi_schedule
https://elixir.bootlin.com/linux/latest/ident/NET_RX_SOFTIRQ
https://en.wikipedia.org/wiki/New_API
https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c

Tasklets

▶ Tasklets are executed within the HI_SOFTIRQ and TASKLET_SOFTIRQ softirqs.
They are executed with all interrupts enabled, but a given tasklet is guaranteed to
execute on a single CPU at a time.

▶ Tasklets are typically created with the tasklet_init() function, when your driver
manages multiple devices, otherwise statically with DECLARE_TASKLET(). A
tasklet is simply implemented as a function. Tasklets can easily be used by
individual device drivers, as opposed to softirqs.

▶ The interrupt handler can schedule tasklet execution with:
• tasklet_schedule() to get it executed in TASKLET_SOFTIRQ
• tasklet_hi_schedule() to get it executed in HI_SOFTIRQ (highest priority)

Note: new kernel code should not introduce any new tasklet, because tasklets are now deprecated
(since 6.9) and being slowly replaced by the new BH workqueue (B̈ottom Half workqueue)̈

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/437

https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/tasklet_init
https://elixir.bootlin.com/linux/latest/ident/DECLARE_TASKLET
https://elixir.bootlin.com/linux/latest/ident/tasklet_schedule
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/tasklet_hi_schedule
https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ

Workqueues

▶ Workqueues are a general mechanism for deferring work. It is not limited in usage
to handling interrupts. It can typically be used for background jobs.

▶ Functions registered to run in workqueues are called works:
• They can be created with the macro INIT_WORK()
• When scheduled, they become threads (called workers) running in process context,

which means:
All interrupts are enabled
Sleeping is allowed

• Works can be queued on:
The default workqueue, with schedule_work()
A workqueue allocated by the subsystem or the drivers, with alloc_workqueue()

▶ The complete API is in include/linux/workqueue.h

▶ Example (drivers/crypto/atmel-i2c.c):
INIT_WORK(&work_data->work, atmel_i2c_work_handler);
schedule_work(&work_data->work);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/437

https://elixir.bootlin.com/linux/latest/ident/INIT_WORK
https://elixir.bootlin.com/linux/latest/ident/schedule_work
https://elixir.bootlin.com/linux/latest/ident/alloc_workqueue
https://elixir.bootlin.com/linux/latest/source/include/linux/workqueue.h
https://elixir.bootlin.com/linux/latest/source/drivers/crypto/atmel-i2c.c

Interrupt management summary

▶ Device driver
• In the probe() function, for each device, use devm_request_irq() to register an

interrupt handler for the device’s interrupt channel.
▶ Interrupt handler

• Called when an interrupt is raised.
• Acknowledge the interrupt
• If needed, schedule a per-device tasklet taking care of handling data.
• Wake up processes waiting for the data on a per-device queue

▶ Device driver
• In the remove() function, for each device, the interrupt handler is automatically

unregistered.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/437

https://elixir.bootlin.com/linux/latest/ident/devm_request_irq

Practical lab - Interrupts

▶ Adding read capability to the character driver
developed earlier.

▶ Register an interrupt handler for each device.
▶ Waiting for data to be available in the read file

operation.
▶ Waking up the code when data are available

from the devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/437

Concurrent Access to Resources: Locking

Concurrent Access to
Resources: Locking

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/437

Sources of concurrency issues

▶ In terms of concurrency, the kernel has the same constraint as a multi-threaded
program: its state is global and visible in all executions contexts

▶ Concurrency arises because of
• Interrupts, which interrupts the current thread to execute an interrupt handler. They

may be using shared resources (memory addresses, hardware registers...)
• Kernel preemption, if enabled, causes the kernel to switch from the execution of one

thread to another. They may be using shared resources.
• Multiprocessing, in which case code is really executed in parallel on different

processors, and they may be using shared resources as well.
▶ The solution is to keep as much local state as possible and for the shared

resources that can’t be made local (such as hardware ones), use locking.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/437

Concurrency protection with locks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/437

Linux mutexes

mutex = mutual exclusion
▶ The kernel’s main locking primitive. It’s a binary lock. Note that counting locks

(semaphores) are also available, but used 30x less frequently.
▶ The process requesting the lock blocks when the lock is already held. Mutexes

can therefore only be used in contexts where sleeping is allowed.
▶ Mutex definition:

• #include <linux/mutex.h>

▶ Initializing a mutex statically (unusual case):
• DEFINE_MUTEX(name);

▶ Or initializing a mutex dynamically (the usual case, on a per-device basis):
• void mutex_init(struct mutex *lock);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 345/437

Locking and unlocking mutexes 1/2

▶ void mutex_lock(struct mutex *lock);

• Tries to lock the mutex, sleeps otherwise.
• Caution: cannot be interrupted, resulting in processes you cannot kill!

▶ int mutex_lock_killable(struct mutex *lock);

• Same, but can be interrupted by a fatal (SIGKILL) signal. If interrupted, returns a
non zero value and doesn’t hold the lock. Test the return value!!!

▶ int mutex_lock_interruptible(struct mutex *lock);

• Same, but can be interrupted by any signal.
▶ void mutex_unlock(struct mutex *lock);

• Releases the lock. Do it as soon as you leave the critical section.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 346/437

https://elixir.bootlin.com/linux/latest/ident/SIGKILL

Spinlocks

▶ Locks to be used for code that is not allowed to sleep (interrupt handlers), or that
doesn’t want to sleep (critical sections). Be very careful not to call functions
which can sleep!

▶ Originally intended for multiprocessor systems
▶ Spinlocks never sleep and keep spinning in a loop until the lock is available.
▶ The critical section protected by a spinlock is not allowed to sleep.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 347/437

The spinlock API

▶ Spinlocks can be initialized:
• Statically (unusual)

DEFINE_SPINLOCK(my_lock);

• Dynamically (the usual case, on a per-device basis)
void spin_lock_init(spinlock_t *lock);

▶ They can be acquired and released with:
• void spin_lock(spinlock_t *lock);

Used for locking in process context (critical sections in which you do not want to
sleep) as well as atomic sections.

• void spin_unlock(spinlock_t *lock);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 348/437

Using spinlocks 1/2

▶ Manipulating spinlocks implies some care:

▶ So, kernel preemption on the local CPU is disabled. We need to avoid deadlocks
(and unbounded latencies) because of preemption from processes that want to get
the same lock.

▶ Disabling kernel preemption also disables migration to avoid the same kind of
issue as pictured above from happening.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 349/437

Using spinlocks 2/2
▶ We also need to avoid deadlocks because of interrupts that could want to get the

same lock:

▶ void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);

▶ void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);
• Disables/restores IRQs on the local CPU.
• Typically used when the lock can be accessed in both process and interrupt context.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 350/437

Using spinlocks 3/3

▶ void spin_lock_bh(spinlock_t *lock);

▶ void spin_unlock_bh(spinlock_t *lock);

• Disables software interrupts, but not hardware ones.
• Useful to protect shared data accessed in process context and in a soft interrupt

(bottom half).
• No need to disable hardware interrupts in this case.

▶ Note that reader/writer spinlocks also exist, allowing for multiple simultaneous
readers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 351/437

Spinlock example
▶ From drivers/tty/serial/uartlite.c

▶ Spinlock structure embedded into struct uart_port

struct uart_port {
spinlock_t lock;
/* Other fields */

};

▶ Spinlock taken/released with protection against interrupts

static unsigned int ulite_tx_empty(struct uart_port *port) {
unsigned long flags;

spin_lock_irqsave(&port->lock, flags);
/* Do something */
spin_unlock_irqrestore(&port->lock, flags);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 352/437

https://elixir.bootlin.com/linux/latest/source/drivers/tty/serial/uartlite.c
https://elixir.bootlin.com/linux/latest/ident/uart_port

More deadlock situations

They can lock up your system. Make sure they never happen!

Rule 1: don’t call a function that can try to
get access to the same lock

Get Lock 1 Call to Function 2

Wait for Lock 1

Deadlock!

Rule 2: if you need multiple locks, always
acquire them in the same order!

Get Lock 1

Get Lock 2

Get Lock 2

Get Lock 1

Deadlock!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 353/437

Debugging locking

▶ Lock debugging: prove locking correctness
• CONFIG_PROVE_LOCKING
• Adds instrumentation to kernel locking code
• Detect violations of locking rules during system life, such as:

Locks acquired in different order (keeps track of locking sequences and compares
them).
Spinlocks acquired in interrupt handlers and also in process context when interrupts
are enabled.

• Not suitable for production systems but acceptable overhead in development.
• See locking/lockdep-design for details

▶ CONFIG_DEBUG_ATOMIC_SLEEP allows to detect code that incorrectly sleeps in
atomic section (while holding lock typically).

• Warning displayed in dmesg in case of such violation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 354/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PROVE_LOCKING
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_ATOMIC_SLEEP

Concurrency issues

▶ Kernel Concurrency SANitizer framework
▶ CONFIG_KCSAN, introduced in Linux 5.8.
▶ Dynamic race detector relying on compile time instrumentation.
▶ Can find concurrency issues (mainly data races) in your system.
▶ See dev-tools/kcsan and https://lwn.net/Articles/816850/ for details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 355/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KCSAN
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://lwn.net/Articles/816850/

Alternatives to locking

As we have just seen, locking can have a strong negative impact on system
performance. In some situations, you could do without it.
▶ By using lock-free algorithms like Read Copy Update (RCU).

• RCU API available in the kernel
• See https://en.wikipedia.org/wiki/Read-copy-update for a coverage of how it

works.
▶ When relevant, use atomic operations.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 356/437

https://en.wikipedia.org/wiki/Read-copy-update

RCU API

▶ Conditions where RCU is useful:
• Frequent reads but infrequent writes
• Focus on getting consistent data rather than getting the latest data

▶ Kind of enforces ownership by enforcing space/time synchronization
▶ RCU API (Documentation/RCU/whatisRCU.rst):

• rcu_read_lock() and rcu_read_unlock(): reclaim/release read access
• synchronize_rcu(), call_rcu() or kfree_rcu(): wait for pre-existing readers
• rcu_assign_pointer(): update RCU-protected pointer
• rcu_dereference(): load RCU-protected pointer

▶ RCU mentorship session by Paul E. McKenney: https://youtu.be/K-4TI5gFsig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 357/437

https://elixir.bootlin.com/linux/latest/source/Documentation/RCU/whatisRCU.rst
https://elixir.bootlin.com/linux/latest/ident/rcu_read_lock
https://elixir.bootlin.com/linux/latest/ident/rcu_read_unlock
https://elixir.bootlin.com/linux/latest/ident/synchronize_rcu
https://elixir.bootlin.com/linux/latest/ident/call_rcu
https://elixir.bootlin.com/linux/latest/ident/kfree_rcu
https://elixir.bootlin.com/linux/latest/ident/rcu_assign_pointer
https://elixir.bootlin.com/linux/latest/ident/rcu_dereference
https://youtu.be/K-4TI5gFsig

RCU example: ensuring consistent accesses (1/2)

Unsafe read/write
struct myconf { int a, b; } *shared_conf; /* initialized */

unsafe_get(int *cur_a, int *cur_b)
{

*cur_a = shared_conf->a;
/* What if *shared_conf gets updated now? The assignement is inconsistent! */
*cur_b = shared_conf->b;

};

unsafe_set(int new_a, int new_b)
{

shared_conf->a = new_a;
shared_conf->b = new_b;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 358/437

RCU example: ensuring consistent accesses (2/2)
Safe read/write with RCU
struct myconf { int a, b; } *shared_conf; /* initialized */

safe_get(int *cur_a, int *cur_b)
{

struct myconf *temp;

rcu_read_lock();
temp = rcu_dereference(shared_conf);
*cur_a = temp->a;
/* If *shared_conf is updated, temp->a and temp->b will remain consistent! */
*cur_b = temp->b;
rcu_read_unlock();

};

safe_set(int new_a, int new_b)
{

struct myconf *newconf = kmalloc(...);
struct myconf *oldconf;

oldconf = rcu_dereference(shared_conf);
newconf->a = new_a;
newconf->b = new_b;
rcu_assign_pointer(shared_conf, newconf);
/* Readers might still have a reference over the old struct here... */
synchronize_rcu();
/* ...but not here! No more readers of the old struct, kfree() is safe! */
kfree(oldconf);

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 359/437

Atomic variables 1/2

#include <linux/atomic.h>

▶ Useful when the shared resource is an integer value
▶ Even an instruction like n++ is not guaranteed to be atomic on all processors!
▶ Ideal for RMW (Read-Modify-Write) operations
▶ Main atomic operations on atomic_t (signed integer, at least 24 bits):

• Set or read the counter:
void atomic_set(atomic_t *v, int i);

int atomic_read(atomic_t *v);

• Operations without return value:
void atomic_inc(atomic_t *v);

void atomic_dec(atomic_t *v);

void atomic_add(int i, atomic_t *v);

void atomic_sub(int i, atomic_t *v);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 360/437

https://elixir.bootlin.com/linux/latest/ident/atomic_t

Atomic variables 2/2

▶ Similar functions testing the result:
• int atomic_inc_and_test(...);
• int atomic_dec_and_test(...);
• int atomic_sub_and_test(...);

▶ Functions returning the new value:
• int atomic_inc_return(...);
• int atomic_dec_return(...);
• int atomic_add_return(...);
• int atomic_sub_return(...);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 361/437

Atomic bit operations
▶ Supply very fast, atomic operations
▶ On most platforms, apply to an unsigned long * type.
▶ Apply to a void * type on a few others.
▶ Ideal for bitmaps
▶ Set, clear, toggle a given bit:

• void set_bit(int nr, unsigned long *addr);
• void clear_bit(int nr, unsigned long *addr);
• void change_bit(int nr, unsigned long *addr);

▶ Test bit value:
• int test_bit(int nr, unsigned long *addr);

▶ Test and modify (return the previous value):
• int test_and_set_bit(...);
• int test_and_clear_bit(...);
• int test_and_change_bit(...);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 362/437

Kernel locking: summary and references

▶ Use mutexes in code that is allowed to sleep
▶ Use spinlocks in code that is not allowed to sleep

(interrupts) or for which sleeping would be too
costly (critical sections)

▶ Use atomic operations to protect integers or
addresses

See kernel-hacking/locking in kernel documentation
for many details about kernel locking mechanisms.

Further reading: see the classical
dining philosophers problem for a
nice illustration of synchronization
and concurrency issues.

Image source: https://en.wikipedia.org/wiki/
Dining_philosophers_problem)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 363/437

https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem

Practical lab - Locking

▶ Add locking to the driver to prevent concurrent
accesses to shared resources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 364/437

Direct Memory Access

Direct Memory Access

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 365/437

Direct Memory Access

DMA main principles

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 366/437

DMA integration
DMA (Direct Memory Access) is used to copy data directly between devices and RAM,
without going through the CPU.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 367/437

Peripheral DMA
Some device controllers embedded their own DMA controller and therefore can do
DMA on their own.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 368/437

DMA controllers
Other device controllers rely on an external DMA controller (on the SoC). Their drivers
need to submit DMA descriptors to this controller.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 369/437

DMA descriptors

DMA descriptors describe the various attributes of a DMA transfer, and are chained.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 370/437

Cache constraints
▶ The CPU can access memory through a data cache

• Using the cache can be more efficient (faster accesses to the cache than the bus)
▶ But the DMA does not access the CPU cache, so one needs to take care of cache

coherency (cache content vs. memory content):
• When the CPU reads from memory accessed by DMA, the relevant cache lines must

be invalidated to force reading from memory again
• When the CPU writes to memory before starting DMA transfers, the cache lines

must be flushed/cleaned in order to force the data to reach the memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 371/437

DMA addressing constraints
▶ Memory and devices have physical addresses: phys_addr_t
▶ CPUs usually access memory through an MMU, using virtual pointers: void *
▶ DMA controllers do not access memory through the MMU and thus cannot

manipulate virtual addresses, instead they access a dma_addr_t through either:
• physical addresses directly
• an IOMMU, in which case a specific mapping must be created

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 372/437

https://elixir.bootlin.com/linux/latest/ident/phys_addr_t
https://elixir.bootlin.com/linux/latest/ident/void *
https://elixir.bootlin.com/linux/latest/ident/dma_addr_t

DMA memory allocation constraints

The APIs must remain generic and handle all cases transparently, hence:
▶ Each memory chunk accessed by the DMA shall be physically contiguous, which

means one can use:
• any memory allocated by kmalloc() (up to 128 KB)
• any memory allocated by __get_free_pages() (up to 8MB)
• block I/O and networking buffers, designed to support DMA

▶ Unless the buffer is smaller than one page, one cannot use:
• kernel memory allocated with vmalloc()
• user memory allocated with malloc()

Almost all the time userspace relies on the kernel to allocate the buffers and mmap()
them to be usable from userspace (requires a dedicated user API)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 373/437

https://elixir.bootlin.com/linux/latest/ident/kmalloc
https://elixir.bootlin.com/linux/latest/ident/__get_free_pages
https://elixir.bootlin.com/linux/latest/ident/vmalloc
https://elixir.bootlin.com/linux/latest/ident/mmap

Direct Memory Access

Kernel APIs for DMA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 374/437

dma-mapping vs. dmaengine vs. dma-buf
The dma-mapping API:
▶ Allocates and manages DMA buffers
▶ Offers generic interfaces to handle coherency
▶ Manages IO-MMU DMA mappings when relevant
▶ See core-api/dma-api and core-api/dma-api-howto

The dmaengine API:
▶ Abstracts the DMA controller
▶ Offers generic functions to configure, queue, trigger, stop transfers
▶ Unused when dealing with peripheral DMA
▶ See driver-api/dmaengine/client and

The dma-buf API:
▶ Enables sharing DMA buffers between devices within the kernel
▶ Not covered in this training

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 375/437

https://www.kernel.org/doc/html/latest/core-api/dma-api.html
https://www.kernel.org/doc/html/latest/core-api/dma-api-howto.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/client.html

dma-mapping: Coherent or streaming DMA mappings

▶ Coherent mappings
• The kernel allocates a suitable buffer and sets the mapping for the driver
• Can simultaneously be accessed by the CPU and device
• So, has to be in a cache coherent memory area
• Usually allocated for the whole time the module is loaded

Can be expensive to setup and use on some platforms
Typically implemented by disabling cache on ARM

▶ Streaming mappings
• Use an already allocated buffer
• The driver provides a buffer, the kernel just sets the mapping
• Mapping set up for each transfer (keeps DMA registers free on the hardware)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 376/437

dma-mapping: memory addressing constraints

▶ The default addressing capability of the DMA controllers is assumed to be 32-bit.
▶ If the platform supports it, the DMA addressing capability can be:

• increased (eg. need to access highmem)
• decreased (eg. ISA devices, where kmalloc() buffers can also be allocated in the

first part of the RAM with GFP_DMA)
▶ Linux stores this capability in a per-device mask, DMA mappings can fail because

a buffer is out of reach
▶ In all cases, the DMA mask shall be consistent before allocating buffers

int dma_set_mask_and_coherent(struct device *dev, u64 mask)

▶ Maximum and optimal buffer sizes can also be retrieved to optimize
allocations/buffer handling

size_t dma_max_mapping_size(struct device *dev);
size_t dma_opt_mapping_size(struct device *dev);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 377/437

https://elixir.bootlin.com/linux/latest/ident/kmalloc
https://elixir.bootlin.com/linux/latest/ident/GFP_DMA

dma-mapping: Allocating coherent memory mappings

The kernel takes care of both buffer allocation and mapping:

#include <linux/dma-mapping.h>

void * /* Output: buffer address */
dma_alloc_coherent(

struct device *dev, /* device structure */
size_t size, /* Needed buffer size in bytes */
dma_addr_t *handle, /* Output: DMA bus address */
gfp_t gfp /* Standard GFP flags */

);

void dma_free_coherent(struct device *dev,
size_t size, void *cpu_addr, dma_addr_t handle);

Note: called consistent mappings on PCI
(pci_alloc_consistent() and pci_free_consistent())

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 378/437

https://elixir.bootlin.com/linux/latest/ident/pci_alloc_consistent
https://elixir.bootlin.com/linux/latest/ident/pci_free_consistent

dma-mapping: Setting up streaming memory mappings (single)

Works on already allocated buffers:

#include <linux/dma-mapping.h>

dma_addr_t dma_map_single(
struct device *, /* device structure */
void *, /* input: buffer to use */
size_t, /* buffer size */
enum dma_data_direction /* Either DMA_BIDIRECTIONAL,

* DMA_TO_DEVICE or
* DMA_FROM_DEVICE */

);

void dma_unmap_single(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 379/437

dma-mapping: Setting up streaming memory mappings (multiples)

A scatterlist using the scatter-gather library can be used to map several buffers
and link them together
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>

struct scatterlist sglist[NENTS], *sg;
int i, count;

sg_init_table(sglist, NENTS);
sg_set_buf(&sglist[0], buf0, len0);
sg_set_buf(&sglist[1], buf1, len1);

count = dma_map_sg(dev, sglist, NENTS, DMA_TO_DEVICE);
for_each_sg(sglist, sg, count, i) {

dma_address[i] = sg_dma_address(sg);
dma_len[i] = sg_dma_len(sg);

}
...
dma_unmap_sg(dev sglist, count, DMA_TO_DEVICE);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 380/437

dma-mapping: Setting up streaming I/O mappings

Physical addresses with MMIO registers might need to be remapped in order to be
accessed through an IO-MMU:

#include <linux/dma-mapping.h>

dma_addr_t dma_map_resource(
struct device *, /* device structure */
phys_addr_t, /* input: resource to use */
size_t, /* buffer size */
enum dma_data_direction, /* Either DMA_BIDIRECTIONAL,

* DMA_TO_DEVICE or
* DMA_FROM_DEVICE */

unsigned long attrs, /* optional attributes */
);

void dma_unmap_resource(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir, unsigned long attrs);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 381/437

dma-mapping: Verifying DMA memory mappings

▶ All mapping helpers can fail and return errors
▶ The right way to check the validity of the returned dma_addr_t is to call:

int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)

• May give additional clues if CONFIG_DMA_API_DEBUG is enabled.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 382/437

https://elixir.bootlin.com/linux/latest/ident/dma_addr_t
https://elixir.bootlin.com/linux/latest/ident/CONFIG_DMA_API_DEBUG

dma-mapping: Syncing streaming DMA mappings
▶ In general streaming mappings are:

• mapped right before use with DMA
MEM_TO_DEV: caches are flushed

• unmapped right after
DEV_TO_MEM: cache lines are invalidated

▶ The CPU shall only access the buffer after unmapping!
▶ If however the same memory region has to be used for several DMA transfers, the

same mapping can be kept in place. In this case the data must be synchronized
before access:

• The CPU needs to access the data:
dma_sync_single_for_cpu(dev, dma_handle, size, direction);
dma_sync_sg_for_cpu(dev, sglist, nents, direction);

• The device needs to access the data:
dma_sync_single_for_device(dev, dma_handle, size, direction);
dma_sync_sg_for_device(dev, sglist, nents, direction);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 383/437

Starting DMA transfers

▶ If the device you’re writing a driver for is doing peripheral DMA, no external API
is involved.

▶ If it relies on an external DMA controller, you’ll need to
1. Ask the hardware to use DMA, so that it will drive its request line
2. Use Linux dmaengine framework, especially its slave API

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 384/437

The dmaengine framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 385/437

dmaengine: Slave API: Initial configuration
Steps to start a DMA transfer with dmaengine:

1. Request a channel for exclusive use with dma_request_chan(), or one of its
variants

• This channel pointer will be used all along
• Returns a pointer over a struct dma_chan which can also be an error pointer

2. Configure the engine by filling a struct dma_slave_config structure and passing
it to dmaengine_slave_config():

struct dma_slave_config txconf = {};

/* Tell the engine what configuration we want on a given channel:
* direction, access size, burst length, source and destination).
* Source being memory, there is no buswidth or maxburst limitation
* and each buffer will be different. */

txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
txconf.dst_maxburst = TX_TRIGGER;
txconf.dst_addr = fifo_dma_addr;
ret = dmaengine_slave_config(dma->txchan, &txconf);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 386/437

https://elixir.bootlin.com/linux/latest/ident/dma_request_chan
https://elixir.bootlin.com/linux/latest/ident/dma_chan
https://elixir.bootlin.com/linux/latest/ident/dma_slave_config
https://elixir.bootlin.com/linux/latest/ident/dmaengine_slave_config

dmaengine: Slave API: Per-transfer configuration (1/2)

1. Create a descriptor with all the required configuration for the next transfer with:
struct dma_async_tx_descriptor *
dmaengine_prep_slave_single(struct dma_chan *chan, dma_addr_t buf,

size_t len, enum dma_transfer_direction dir,
unsigned long flags);

struct dma_async_tx_descriptor *
dmaengine_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,

unsigned int sg_len, enum dma_transfer_direction dir,
unsigned long flags);

struct dma_async_tx_descriptor *
dmaengine_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t buf_len,

size_t period_len, enum dma_data_direction dir);

▶ Common flags are:
• DMA_PREP_INTERRUPT: Generates an interrupt once done
• DMA_CTRL_ACK: No need for a manual ack of the transaction

▶ The descriptor returned can be used to fill-in a callback:
desc->callback = foo_dma_complete;
desc->callback_param = foo_dev;

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 387/437

https://elixir.bootlin.com/linux/latest/ident/DMA_PREP_INTERRUPT
https://elixir.bootlin.com/linux/latest/ident/DMA_CTRL_ACK

dmaengine: Slave API: Per-transfer configuration (2/2)

2. Queue the next operation:
dma_cookie_t cookie;

cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret)

...

3. Trigger the queued transfers
dma_async_issue_pending(chan);

3bis. In case anything went wrong or the device should stop being used, it is possible to
terminate all ongoing transactions with:

dmaengine_terminate_sync(chan);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 388/437

Examples

▶ Commented network driver, whith both streaming and coherent mappings:
https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c

▶ Example of usage of the slave API: look at the code for stm32_i2c_prep_dma_xfer().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 389/437

https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c
https://elixir.bootlin.com/linux/latest/ident/stm32_i2c_prep_dma_xfer

Practical lab - DMA

▶ Setup streaming mappings with the
dma-mapping API

▶ Configure a DMA controller with the
dmaengine API

▶ Configure the hardware to trigger DMA
transfers

▶ Wait for DMA completion

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 390/437

Kernel debugging

Kernel debugging

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 391/437

Debugging using messages (1/3)

Three APIs are available
▶ The old printk(), no longer recommended for new debugging messages
▶ The pr_*() family of functions: pr_emerg(), pr_alert(), pr_crit(), pr_err(),

pr_warn(), pr_notice(), pr_info(), pr_cont()
and the special pr_debug() (see next pages)

• Defined in include/linux/printk.h
• They take a classic format string with arguments
• Example:

pr_info("Booting CPU %d\n", cpu);
• Here’s what you get in the kernel log:

[202.350064] Booting CPU 1

▶ print_hex_dump_debug(): useful to dump a buffer with hexdump like display

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 392/437

https://elixir.bootlin.com/linux/latest/ident/printk
https://elixir.bootlin.com/linux/latest/ident/pr_emerg
https://elixir.bootlin.com/linux/latest/ident/pr_alert
https://elixir.bootlin.com/linux/latest/ident/pr_crit
https://elixir.bootlin.com/linux/latest/ident/pr_err
https://elixir.bootlin.com/linux/latest/ident/pr_warn
https://elixir.bootlin.com/linux/latest/ident/pr_notice
https://elixir.bootlin.com/linux/latest/ident/pr_info
https://elixir.bootlin.com/linux/latest/ident/pr_cont
https://elixir.bootlin.com/linux/latest/ident/pr_debug
https://elixir.bootlin.com/linux/latest/source/include/linux/printk.h
https://elixir.bootlin.com/linux/latest/ident/print_hex_dump_debug

Debugging using messages (2/3)

▶ The dev_*() family of functions: dev_emerg(), dev_alert(), dev_crit(),
dev_err(), dev_warn(), dev_notice(), dev_info()
and the special dev_dbg() (see next page)

• They take a pointer to struct device as first argument, and then a format string
with arguments

• Defined in include/linux/dev_printk.h
• To be used in drivers integrated with the Linux device model
• Example:

dev_info(&pdev->dev, "in probe\n");
• Here’s what you get in the kernel log:

[25.878382] serial 48024000.serial: in probe
[25.884873] serial 481a8000.serial: in probe

▶ *_ratelimited() version exists which limits the amount of print if called too
much based on /proc/sys/kernel/printk_ratelimit{_burst} values

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 393/437

https://elixir.bootlin.com/linux/latest/ident/dev_emerg
https://elixir.bootlin.com/linux/latest/ident/dev_alert
https://elixir.bootlin.com/linux/latest/ident/dev_crit
https://elixir.bootlin.com/linux/latest/ident/dev_err
https://elixir.bootlin.com/linux/latest/ident/dev_warn
https://elixir.bootlin.com/linux/latest/ident/dev_notice
https://elixir.bootlin.com/linux/latest/ident/dev_info
https://elixir.bootlin.com/linux/latest/ident/dev_dbg
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/source/include/linux/dev_printk.h

Debugging using messages (3/3)

▶ The kernel defines many more format specifiers than the standard printf()
existing ones.

• %p: Display the hashed value of pointer by default.
• %px: Always display the address of a pointer (use carefully on non-sensitive

addresses).
• %pK: Display hashed pointer value, zeros or the pointer address depending on

kptr_restrict sysctl value.
• %pOF: Device-tree node format specifier.
• %pr: Resource structure format specifier.
• %pa: Physical address display (work on all architectures 32/64 bits)
• %pe: Error pointer (displays the string corresponding to the error number)

▶ /proc/sys/kernel/kptr_restrict should be set to 1 in order to display pointers
which uses %pK

▶ See core-api/printk-formats for an exhaustive list of supported format
specifiers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 394/437

https://www.kernel.org/doc/html/latest/core-api/printk-formats.html

pr_debug() and dev_dbg()

▶ When the driver is compiled with DEBUG defined, all these messages are compiled
and printed at the debug level. DEBUG can be defined by #define DEBUG at the
beginning of the driver, or using ccflags-$(CONFIG_DRIVER) += -DDEBUG in the
Makefile

▶ When the kernel is compiled with CONFIG_DYNAMIC_DEBUG, then these messages
can dynamically be enabled on a per-file, per-module or per-message basis, by
writing commands to /proc/dynamic_debug/control. Note that messages are
not enabled by default.

• Details in admin-guide/dynamic-debug-howto
• Very powerful feature to only get the debug messages you’re interested in.

▶ When neither DEBUG nor CONFIG_DYNAMIC_DEBUG are used, these messages are not
compiled in.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 395/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG

Configuring the priority

▶ Each message is associated to a priority, ranging from 0 for emergency to 7 for
debug, as specified in include/linux/kern_levels.h.

▶ All the messages, regardless of their priority, are stored in the kernel log ring buffer
• Typically accessed using the dmesg command

▶ Some of the messages may appear on the console, depending on their priority and
the configuration of

• The loglevel kernel parameter, which defines the priority number below which
messages are displayed on the console. Details in admin-guide/kernel-parameters.
Examples: loglevel=0: no message, loglevel=8: all messages

• The value of /proc/sys/kernel/printk, which allows to change at runtime the
priority above which messages are displayed on the console. Details in
admin-guide/sysctl/kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 396/437

https://elixir.bootlin.com/linux/latest/source/include/linux/kern_levels.h
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html

DebugFS

A virtual filesystem to export debugging information to user space.
▶ Kernel configuration: CONFIG_DEBUG_FS

• Kernel hacking -> Debug Filesystem

▶ The debugging interface disappears when Debugfs is configured out.
▶ You can mount it as follows:

• sudo mount -t debugfs none /sys/kernel/debug

▶ First described on https://lwn.net/Articles/115405/

▶ API documented in the Linux Kernel Filesystem API: filesystems/debugfs The
debugfs filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 397/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_FS
https://lwn.net/Articles/115405/
https://www.kernel.org/doc/html/latest/filesystems/debugfs.html

DebugFS API
▶ Create a sub-directory for your driver:

• struct dentry *debugfs_create_dir(const char *name,

struct dentry *parent);

▶ Expose an integer as a file in DebugFS. Example:
• struct dentry *debugfs_create_u8

(const char *name, mode_t mode, struct dentry *parent,

u8 *value);

u8, u16, u32, u64 for decimal representation
x8, x16, x32, x64 for hexadecimal representation

▶ Expose a binary blob as a file in DebugFS:
• struct dentry *debugfs_create_blob(const char *name,

mode_t mode, struct dentry *parent,

struct debugfs_blob_wrapper *blob);

▶ Also possible to support writable DebugFS files or customize the output using the
more generic debugfs_create_file() function.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 398/437

https://elixir.bootlin.com/linux/latest/ident/debugfs_create_file

Deprecated debugging mechanisms

Some additional debugging mechanisms, whose usage is now considered deprecated
▶ Adding special ioctl() commands for debugging purposes. DebugFS is preferred.
▶ Adding special entries in the proc filesystem. DebugFS is preferred.
▶ Adding special entries in the sysfs filesystem. DebugFS is preferred.
▶ Using printk(). The pr_*() and dev_*() functions are preferred.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 399/437

https://elixir.bootlin.com/linux/latest/ident/printk

Using Magic SysRq
Functionnality provided by serial drivers
▶ Allows to run multiple debug / rescue commands even when the kernel seems to

be in deep trouble
• On PC: press [Alt] + [Prnt Scrn] + <character> simultaneously

([SysRq] = [Alt] + [Prnt Scrn])
• On embedded: in the console, send a break character

(Picocom: press [Ctrl] + a followed by [Ctrl] + \), then press <character>

▶ Example commands:
• h: show available commands
• s: sync all mounted filesystems
• b: reboot the system
• n: makes RT processes nice-able.
• w: shows the kernel stack of all sleeping processes
• t: shows the kernel stack of all running processes
• You can even register your own!

▶ Detailed in admin-guide/sysrq

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 400/437

https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

kgdb - A kernel debugger

▶ CONFIG_KGDB in Kernel hacking.
▶ The execution of the kernel is fully controlled by gdb from another machine,

connected through a serial line.
▶ Can do almost everything, including inserting breakpoints in interrupt handlers.
▶ Feature supported for the most popular CPU architectures
▶ CONFIG_GDB_SCRIPTS allows to build GDB python scripts that are provided by the

kernel.
• See dev-tools/gdb-kernel-debugging for more information

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 401/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GDB_SCRIPTS
https://www.kernel.org/doc/html/latest/dev-tools/gdb-kernel-debugging.html

Using kgdb (1/2)

▶ Details available in the kernel documentation: dev-tools/kgdb

▶ You must include a kgdb I/O driver. One of them is kgdb over serial console
(kgdboc: kgdb over console, enabled by CONFIG_KGDB_SERIAL_CONSOLE)

▶ Configure kgdboc at boot time by passing to the kernel:
• kgdboc=<tty-device>,<bauds>.
• For example: kgdboc=ttyS0,115200

▶ Or at runtime using sysfs:
• echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc
• If the console does not have polling support, this command will yield an error.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 402/437

https://www.kernel.org/doc/html/latest/dev-tools/kgdb.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB_SERIAL_CONSOLE

Using kgdb (2/2)

▶ Then also pass kgdbwait to the kernel: it makes kgdb wait for a debugger
connection.

▶ Boot your kernel, and when the console is initialized, interrupt the kernel with a
break character and then g in the serial console (see our Magic SysRq
explanations).

▶ On your workstation, start gdb as follows:
• arm-linux-gdb ./vmlinux
• (gdb) set remotebaud 115200
• (gdb) target remote /dev/ttyS0

▶ Once connected, you can debug a kernel the way you would debug an application
program.

▶ On GDB side, the first threads represent the CPU context (ShadowCPU<x>),
then all the other threads represents a task.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 403/437

Debugging with a JTAG interface
Two types of JTAG dongles
▶ The ones offering a gdb compatible interface, over a serial port or an Ethernet

connection. gdb can directly connect to them.
▶ The ones not offering a gdb compatible interface are generally supported by

OpenOCD (Open On Chip Debugger): http://openocd.sourceforge.net/
• OpenOCD is the bridge between the gdb debugging language and the JTAG

interface of the target CPU.
• See the very complete documentation:

https://openocd.org/pages/documentation.html
• For each board, you’ll need an OpenOCD configuration file (ask your supplier)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 404/437

http://openocd.sourceforge.net/
https://openocd.org/pages/documentation.html

Early traces

▶ If something breaks before the tty layer, serial driver and serial console are
properly registered, you might just have nothing else after ”Starting kernel...”

▶ On ARM, if your platform implements it, you can activate (CONFIG_DEBUG_LL and
CONFIG_EARLYPRINTK), and add earlyprintk to the kernel command line

• Assembly routines to just push a character and wait for it to be sent
• Extremely basic, but is part of the uncompressed section, so available even if the

kernel does not uncompress correctly!
▶ On other platforms, hoping that your serial driver implements

OF_EARLYCON_DECLARE(), you can enable CONFIG_SERIAL_EARLYCON
• The kernel will try to hook an appropriate earlycon UART driver using the

stdout-path of the device-tree.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 405/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_LL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EARLYPRINTK
https://elixir.bootlin.com/linux/latest/ident/OF_EARLYCON_DECLARE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SERIAL_EARLYCON

More kernel debugging tips

▶ Make sure CONFIG_KALLSYMS_ALL is enabled
• To get oops messages with symbol names instead of raw addresses
• Turned on by default

▶ Make sure CONFIG_DEBUG_INFO is also enabled
• This way, the kernel is compiled with $(CROSSCOMPILE)gcc -g, which keeps the

source code inside the binaries.
▶ If your device is not probed, try enabling CONFIG_DEBUG_DRIVER

• Extremely verbose!
• Will enable all the debug logs in the device-driver core section

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 406/437

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KALLSYMS_ALL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_DRIVER

Getting help and reporting bugs

▶ If you are using a custom kernel from a hardware vendor, contact that company.
The community will have less interest supporting a custom kernel.

▶ Otherwise, or if this doesn’t work, try to reproduce the issue on the latest version
of the kernel.

▶ Make sure you investigate the issue as much as you can: see
admin-guide/bug-bisect

▶ Check for previous bugs reports. Use web search engines, accessing public mailing
list archives.

▶ If you’re the first to face the issue, it’s very useful for others to report it, even if
you cannot investigate it further.

▶ If the subsystem you report a bug on has a mailing list, use it. Otherwise, contact
the official maintainer (see the MAINTAINERS file). Always give as many useful
details as possible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 407/437

https://www.kernel.org/doc/html/latest/admin-guide/bug-bisect.html
https://elixir.bootlin.com/linux/latest/source/MAINTAINERS

Practical lab - Kernel debugging

▶ Use the dynamic debug feature.
▶ Add debugfs entries
▶ Load a broken driver and see it crash
▶ Analyze the error information dumped by the

kernel.
▶ Disassemble the code and locate the exact C

instruction which caused the failure.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 408/437

Power Management

Power Management

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 409/437

PM building blocks

▶ Several power management building blocks
• Clock framework
• Suspend and resume
• CPUidle
• Runtime power management
• Power domains
• Frequency and voltage scaling

▶ Independent building blocks that can be improved gradually during development

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 410/437

Clock framework (1)

▶ Generic framework to manage clocks used by devices in the system
▶ Allows to reference count clock users and to shutdown the unused clocks to save

power
▶ Simple API described in include/linux/clk.h.

• clk_get() to lookup and obtain a reference to a clock producer
• clk_put() to free the clock source
• clk_prepare_enable() to inform the system when the clock source should be

running
• clk_disable_unprepare() to inform the system when the clock source is no longer

required.
• clk_get_rate() to obtain the current clock rate (in Hz) for a clock source
• clk_set_rate() to set the current clock rate (in Hz) of a clock source

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 411/437

https://elixir.bootlin.com/linux/latest/source/include/linux/clk.h
https://elixir.bootlin.com/linux/latest/ident/clk_get
https://elixir.bootlin.com/linux/latest/ident/clk_put
https://elixir.bootlin.com/linux/latest/ident/clk_prepare_enable
https://elixir.bootlin.com/linux/latest/ident/clk_disable_unprepare
https://elixir.bootlin.com/linux/latest/ident/clk_get_rate
https://elixir.bootlin.com/linux/latest/ident/clk_set_rate

Clock framework (2)

The common clock framework
▶ Allows to declare the available clocks and their association to devices in the

Device Tree
▶ Provides a debugfs representation of the clock tree
▶ Is implemented in drivers/clk/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 412/437

https://elixir.bootlin.com/linux/latest/source/drivers/clk/

Diagram overview of the common clock framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 413/437

Clock framework (3)

The interface of the CCF divided into two halves:
▶ Common Clock Framework core

• Common definition of struct clk
• Common implementation of the clk.h API (defined in drivers/clk/clk.c)
• struct clk_ops: operations invoked by the clk API implementation
• Not supposed to be modified when adding a new driver

▶ Hardware-specific
• Callbacks registered with struct clk_ops and the corresponding hardware-specific

structures
• Has to be written for each new hardware clock
• Example: drivers/clk/mvebu/clk-cpu.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 414/437

https://elixir.bootlin.com/linux/latest/ident/clk
https://elixir.bootlin.com/linux/latest/source/drivers/clk/clk.c
https://elixir.bootlin.com/linux/latest/ident/clk_ops
https://elixir.bootlin.com/linux/latest/ident/clk_ops
https://elixir.bootlin.com/linux/latest/source/drivers/clk/mvebu/clk-cpu.c

Clock framework (4)

Hardware clock operations: device tree
▶ The device tree is the mandatory way to declare a clock and to get its

resources, as for any other driver using DT we have to:
• Parse the device tree to setup the clock: the resources but also the properties are

retrieved.
• Declare the compatible clocks and associate each to an initialization function

using CLK_OF_DECLARE()
• Example: arch/arm/boot/dts/marvell/armada-xp.dtsi and

drivers/clk/mvebu/armada-xp.c

See our presentation about the Clock Framework for more details:
https://bootlin.com/pub/conferences/2013/elce/common-clock-framework-how-to-use-it/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 415/437

https://elixir.bootlin.com/linux/latest/ident/CLK_OF_DECLARE
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/marvell/armada-xp.dtsi
https://elixir.bootlin.com/linux/latest/source/drivers/clk/mvebu/armada-xp.c
https://bootlin.com/pub/conferences/2013/elce/common-clock-framework-how-to-use-it/

Suspend and resume (to / from RAM)

▶ Infrastructure in the kernel to support suspend and resume
▶ System on Chip hooks

• Define operations (at least valid() and enter()) struct platform_suspend_ops
structure. See the documentation for this structure for details about possible
operations and the way they are used.

• Registered using the suspend_set_ops() function
• See arch/arm/mach-at91/pm.c

▶ Device driver hooks
• pm operations (suspend() and resume() hooks) in the struct device_driver as a

struct dev_pm_ops structure in (struct platform_driver, struct usb_driver,
etc.)

• See drivers/net/ethernet/cadence/macb_main.c

▶ Hibernate to disk is based on suspend to RAM, copying the RAM contents (after
a simulated suspend) to a swap partition.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 416/437

https://elixir.bootlin.com/linux/latest/ident/platform_suspend_ops
https://elixir.bootlin.com/linux/latest/ident/suspend_set_ops
https://elixir.bootlin.com/linux/latest/source/arch/arm/mach-at91/pm.c
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://elixir.bootlin.com/linux/latest/ident/platform_driver
https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/cadence/macb_main.c

Triggering suspend / hibernate

▶ struct suspend_ops functions are called by the enter_state() function.
enter_state() also takes care of executing the suspend and resume functions for
your devices.

▶ Read kernel/power/suspend.c
▶ The execution of this function can be triggered from user space:

• echo mem > /sys/power/state (suspend to RAM)
• echo disk > /sys/power/state (hibernate to disk)

▶ Systemd can also manage suspend and hibernate for you, and offers
customizations

• systemctl suspend or systemctl hibernate.
• See https://www.man7.org/linux/man-pages/man8/systemd-

suspend.service.8.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 417/437

https://elixir.bootlin.com/linux/latest/ident/suspend_ops
https://elixir.bootlin.com/linux/latest/ident/enter_state
https://elixir.bootlin.com/linux/latest/ident/enter_state
https://elixir.bootlin.com/linux/latest/source/kernel/power/suspend.c
https://www.man7.org/linux/man-pages/man8/systemd-suspend.service.8.html
https://www.man7.org/linux/man-pages/man8/systemd-suspend.service.8.html

Saving power in the idle loop

▶ The idle loop is what you run when there’s nothing left to run in the system.
▶ arch_cpu_idle() implemented in all architectures in

arch/<arch>/kernel/process.c

▶ Example: arch/arm/kernel/process.c

▶ The CPU can run power saving HLT instructions, enter NAP mode, and even
disable the timers (tickless systems).

▶ See also https://en.wikipedia.org/wiki/Idle_loop

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 418/437

https://elixir.bootlin.com/linux/latest/ident/arch_cpu_idle
https://elixir.bootlin.com/linux/latest/source/arch/arm/kernel/process.c
https://en.wikipedia.org/wiki/Idle_loop

Managing idle

Adding support for multiple idle levels
▶ Modern CPUs have several sleep states offering different power savings with

associated wake up latencies
▶ The dynamic tick feature allows to remove the periodic timer tick to save power,

and to know when the next event is scheduled, for smarter sleeps.
▶ CPUidle infrastructure to change sleep states

• Platform-specific driver defining sleep states and transition operations
• Platform-independent governors
• Available in particular for x86/ACPI and most ARM SoCs
• See admin-guide/pm/cpuidle in kernel documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 419/437

https://www.kernel.org/doc/html/latest/admin-guide/pm/cpuidle.html

PowerTOP

https://en.wikipedia.org/wiki/PowerTOP

▶ With dynamic ticks, allows to fix parts of kernel code and applications that wake
up the system too often.

▶ PowerTOP allows to track the worst offenders
▶ Now available on ARM cpus implementing CPUidle
▶ Also gives you useful hints for reducing power.
▶ Try it on your x86 laptop:

sudo powertop

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 420/437

https://en.wikipedia.org/wiki/PowerTOP

Runtime power management

▶ Managing per-device idle, each device being managed by its device driver
independently from others.

▶ According to the kernel configuration interface: Enable functionality allowing I/O
devices to be put into energy-saving (low power) states at run time (or
autosuspended) after a specified period of inactivity and woken up in response to
a hardware-generated wake-up event or a driver’s request.

▶ New hooks must be added to the drivers: runtime_suspend(),
runtime_resume(), runtime_idle() in the struct dev_pm_ops structure in
struct device_driver.

▶ API and details on power/runtime_pm

▶ See drivers/net/ethernet/cadence/macb_main.c again.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 421/437

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://www.kernel.org/doc/html/latest/power/runtime_pm.html
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/cadence/macb_main.c

Generic PM Domains (genpd)
▶ Generic infrastructure to implement power domains based on Device Tree

descriptions, allowing to group devices by the physical power domain they belong
to. This sits at the same level as bus type for calling PM hooks.

▶ All the devices in the same PD get the same state at the same time.
▶ Specifications and examples available at

Documentation/devicetree/bindings/power/power_domain.txt

▶ Driver example: drivers/soc/rockchip/pm_domains.c
(rockchip_pd_power_on(), rockchip_pd_power_off(),
rockchip_pm_add_one_domain()...)

▶ DT example: look for rockchip,px30-power-controller
(arch/arm64/boot/dts/rockchip/px30.dtsi) and find PD definitions and
corresponding devices.

▶ See Kevin Hilman’s talk at Kernel Recipes 2017:
https://youtu.be/SctfvoskABM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 422/437

https://kernel.org/doc/Documentation/devicetree/bindings/power/power_domain.txt
https://elixir.bootlin.com/linux/latest/source/drivers/soc/rockchip/pm_domains.c
https://elixir.bootlin.com/linux/latest/ident/rockchip_pd_power_on
https://elixir.bootlin.com/linux/latest/ident/rockchip_pd_power_off
https://elixir.bootlin.com/linux/latest/ident/rockchip_pm_add_one_domain
https://elixir.bootlin.com/linux/latest/B/ident/rockchip%2Cpx30-power-controller
https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/rockchip/px30.dtsi
https://youtu.be/SctfvoskABM

Frequency and voltage scaling (1)

Frequency and voltage scaling possible through the cpufreq kernel infrastructure.
▶ Generic infrastructure: drivers/cpufreq/cpufreq.c and

include/linux/cpufreq.h
▶ Generic governors, responsible for deciding frequency and voltage transitions

• performance: maximum frequency
• powersave: minimum frequency
• ondemand: measures CPU consumption to adjust frequency
• conservative: often better than ondemand. Only increases frequency gradually

when the CPU gets loaded.
• schedutil: Tightly integrated with the scheduler, making per-policy decisions, RT

tasks running at full speed.
• userspace: leaves the decision to a user space daemon.

▶ This infrastructure can be controlled from
/sys/devices/system/cpu/cpu<n>/cpufreq/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 423/437

https://elixir.bootlin.com/linux/latest/source/drivers/cpufreq/cpufreq.c
https://elixir.bootlin.com/linux/latest/source/include/linux/cpufreq.h

Frequency and voltage scaling (2)

▶ CPU frequency drivers are in drivers/cpufreq/. Example:
drivers/cpufreq/omap-cpufreq.c

▶ Must implement the operations of the cpufreq_driver structure and register
them using cpufreq_register_driver()

• init() for initialization
• exit() for cleanup
• verify() to verify the user-chosen policy
• setpolicy() or target() to actually perform the frequency change

▶ See documentation in cpu-freq/ for useful explanations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/437

https://elixir.bootlin.com/linux/latest/source/drivers/cpufreq/
https://elixir.bootlin.com/linux/latest/source/drivers/cpufreq/omap-cpufreq.c
https://elixir.bootlin.com/linux/latest/ident/cpufreq_register_driver
https://www.kernel.org/doc/html/latest/cpu-freq/

Regulator framework

▶ Modern embedded platforms have hardware responsible for voltage and current
regulation

▶ The regulator framework allows to take advantage of this hardware to save power
when parts of the system are unused

• A consumer interface for device drivers (i.e. users)
• Regulator driver interface for regulator drivers
• Machine interface for board configuration
• sysfs interface for user space

▶ See power/regulator/ in kernel documentation.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 425/437

https://www.kernel.org/doc/html/latest/power/regulator/

BSP work for a new board

In case you just need to create a BSP for your board, and your CPU already has full
PM support, you should just need to:
▶ Create clock definitions and bind your devices to them.
▶ Implement PM handlers (suspend, resume) in the drivers for your board specific

devices.
▶ Implement runtime PM handlers in your drivers.
▶ Implement board specific power management if needed (mainly battery

management)
▶ Implement regulator framework hooks for your board if needed.
▶ Attach on-board devices to PM domains if needed
▶ All other parts of the PM infrastructure should be already there: suspend /

resume, cpuidle, cpu frequency and voltage scaling, PM domains.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 426/437

Useful resources

▶ power/ in kernel documentation.
• Will give you many useful details.

▶ Introduction to kernel power management, Kevin Hilman (Kernel Recipes 2015)
• https://www.youtube.com/watch?v=juJJZORgVwI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 427/437

https://www.kernel.org/doc/html/latest/power/
https://www.youtube.com/watch?v=juJJZORgVwI

Kernel Resources

Kernel Resources

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 428/437

Kernel Development News

Linux Weekly News
▶ https://lwn.net/

▶ The weekly digest off all Linux and free software
information sources

▶ In depth technical discussions about the kernel
▶ Coverage of the features accepted in each merge

window
▶ Subscribe to finance the editors ($7 / month)
▶ Articles available for non subscribers after 1 week.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 429/437

https://lwn.net/

Useful Online Resources
▶ Kernel documentation

• https://kernel.org/doc/
▶ Linux kernel mailing list FAQ

• http://vger.kernel.org/lkml/
• Complete Linux kernel FAQ
• Read this before asking a question to the mailing list

▶ Linux kernel mailing lists
• http://lore.kernel.org/
• Easy browsing and referencing of all e-mail threads
• Easy access to an mbox in order to answer to e-mails you were not Cc’ed to

▶ Kernel Newbies
• https://kernelnewbies.org/
• Articles, presentations, HOWTOs, recommended reading, useful tools for people

getting familiar with Linux kernel or driver development.
• Glossary: https://kernelnewbies.org/KernelGlossary
• In depth coverage of the new features in each kernel release:

https://kernelnewbies.org/LinuxChanges
▶ The https://elinux.org wiki

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 430/437

https://kernel.org/doc/
http://vger.kernel.org/lkml/
http://lore.kernel.org/
https://kernelnewbies.org/
https://kernelnewbies.org/KernelGlossary
https://kernelnewbies.org/LinuxChanges
https://elinux.org

International Conferences (1)
▶ Embedded Linux Conference:

• https://embeddedlinuxconference.com/
• Organized by the Linux Foundation
• Once per year, alternating North America/Europe
• Very interesting kernel and user space topics for embedded

systems developers. Many kernel and embedded project
maintainers are present.

• Presentation slides and videos freely available on
https://elinux.org/ELC_Presentations

▶ Linux Plumbers
• https://linuxplumbersconf.org
• About the low-level plumbing of Linux: kernel, audio, power

management, device management, multimedia, etc.
• Not really a conventional conference with formal

presentations, but rather a place where contributors on each
topic meet, share their progress and make plans for work
ahead.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 431/437

https://embeddedlinuxconference.com/
https://elinux.org/ELC_Presentations
https://linuxplumbersconf.org

International Conferences (2)

▶ Kernel Recipes: https://kernel-recipes.org/
• Well attended conference in Europe (Paris), only one

track at a time, with a format that really allows for
discussions.

▶ linux.conf.au: https://linux.org.au/conf/
• In Australia / New Zealand
• Features a few presentations by key kernel hackers.

▶ Currently, most conferences are available on-line. They
are much more affordable and often free.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 432/437

https://kernel-recipes.org/
https://linux.org.au/conf/

After the course

Continue to learn:
▶ Run your labs again on your own

hardware. The Nunchuk lab should be
rather straightforward, but the serial
lab will be quite different if you use a
different processor.

▶ Learn by reading the kernel code by
yourself, ask questions and propose
improvements.

▶ Implement and share drivers for your
own hardware, of course!

Hobbyists can make their first
contributions by:
▶ Helping with tasks keeping the kernel

code clean and up-to-date:
https://kernelnewbies.org/
KernelJanitors/Todo

▶ Proposing fixes for issues reported by
the Coccinelle tool:
make coccicheck

▶ Participating to improving drivers in
drivers/staging/

▶ Investigating and do the triage of
issues reported by Coverity Scan:
https://scan.coverity.com/
projects/linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 433/437

https://kernelnewbies.org/KernelJanitors/Todo
https://kernelnewbies.org/KernelJanitors/Todo
https://elixir.bootlin.com/linux/latest/source/drivers/staging/
https://scan.coverity.com/projects/linux
https://scan.coverity.com/projects/linux

Contribute your changes

Recommended resources
▶ See process/submitting-patches for guidelines and

https://kernelnewbies.org/UpstreamMerge for very helpful advice to have your
changes merged upstream (by Rik van Riel).

▶ Watch the Write and Submit your first Linux kernel Patch talk by Greg. K.H:
https://www.youtube.com/watch?v=LLBrBBImJt4

▶ How to Participate in the Linux Community (by Jonathan Corbet).
A guide to the kernel development process.
http://www.static.linuxfound.org/sites/lfcorp/files/How-Participate-Linux-Community_0.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 434/437

https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://kernelnewbies.org/UpstreamMerge
https://www.youtube.com/watch?v=LLBrBBImJt4
http://www.static.linuxfound.org/sites/lfcorp/files/How-Participate-Linux-Community_0.pdf

Last slides

Last slides

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 435/437

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 436/437

Rights to copy

© Copyright 2004-2025, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 437/437

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

Backup slides

Backup slides

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/16

Backup slides

mmap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/16

mmap

▶ Possibility to have parts of the virtual address space of a program mapped to the
contents of a file

▶ Particularly useful when the file is a device file
▶ Allows to access device I/O memory and ports without having to go through

(expensive) read, write or ioctl calls
▶ One can access to current mapped files by two means:

• /proc/<pid>/maps
• pmap <pid>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/16

/proc/<pid>/maps

start-end perm offset major:minor inode mapped file name
...
7f4516d04000-7f4516d06000 rw-s 1152a2000 00:05 8406 /dev/dri/card0
7f4516d07000-7f4516d0b000 rw-s 120f9e000 00:05 8406 /dev/dri/card0
...
7f4518728000-7f451874f000 r-xp 00000000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
7f451874f000-7f451894f000 ---p 00027000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
7f451894f000-7f4518951000 r--p 00027000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
7f4518951000-7f4518952000 rw-p 00029000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
...
7f451da4f000-7f451dc3f000 r-xp 00000000 08:01 1549 /usr/bin/Xorg
7f451de3e000-7f451de41000 r--p 001ef000 08:01 1549 /usr/bin/Xorg
7f451de41000-7f451de4c000 rw-p 001f2000 08:01 1549 /usr/bin/Xorg
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/16

mmap overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/16

How to Implement mmap - User space

▶ Open the device file
▶ Call the mmap system call (see man mmap for details):

void * mmap(
void *start, /* Often 0, preferred starting address */
size_t length, /* Length of the mapped area */
int prot, /* Permissions: read, write, execute */
int flags, /* Options: shared mapping, private copy... */
int fd, /* Open file descriptor */
off_t offset /* Offset in the file */

);

▶ You get a virtual address you can write to or read from.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/16

How to Implement mmap - Kernel space

▶ Character driver: implement an mmap file operation and add it to the driver file
operations:
int (*mmap) (

struct file *, /* Open file structure */
struct vm_area_struct * /* Kernel VMA structure */

);

▶ Initialize the mapping.
• Can be done in most cases with the remap_pfn_range() function, which takes care

of most of the job.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/16

https://elixir.bootlin.com/linux/latest/ident/remap_pfn_range

remap_pfn_range()

▶ pfn: page frame number
▶ The most significant bits of the page address (without the bits corresponding to

the page size).
#include <linux/mm.h>

int remap_pfn_range(
struct vm_area_struct *, /* VMA struct */
unsigned long virt_addr, /* Starting user

* virtual address */
unsigned long pfn, /* pfn of the starting

* physical address */
unsigned long size, /* Mapping size */
pgprot_t prot /* Page permissions */

);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/16

Simple mmap implementation
static int acme_mmap

(struct file * file, struct vm_area_struct *vma)
{

size = vma->vm_end - vma->vm_start;

if (size > ACME_SIZE)
return -EINVAL;

if (remap_pfn_range(vma,
vma->vm_start,
ACME_PHYS >> PAGE_SHIFT,
size,
vma->vm_page_prot))

return -EAGAIN;

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/16

devmem2

▶ https://bootlin.com/pub/mirror/devmem2.c, by Jan-Derk Bakker
▶ Very useful tool to directly peek (read) or poke (write) I/O addresses mapped in

physical address space from a shell command line!
• Very useful for early interaction experiments with a device, without having to code

and compile a driver.
• Uses mmap to /dev/mem.
• Examples (b: byte, h: half, w: word)

devmem2 0x000c0004 h (reading)
devmem2 0x000c0008 w 0xffffffff (writing)

• devmem is now available in BusyBox, making it even easier to use.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/16

https://bootlin.com/pub/mirror/devmem2.c

mmap summary

▶ The device driver is loaded. It defines an mmap file operation.
▶ A user space process calls the mmap system call.
▶ The mmap file operation is called.
▶ It initializes the mapping using the device physical address.
▶ The process gets a starting address to read from and write to (depending on

permissions).
▶ The MMU automatically takes care of converting the process virtual addresses

into physical ones.
▶ Direct access to the hardware without any expensive read or write system calls

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/16

Backup slides

Useful general-purpose kernel APIs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/16

Memory/string utilities

▶ In include/linux/string.h
• Memory-related: memset(), memcpy(), memmove(), memscan(), memcmp(), memchr()
• String-related: strcpy(), strcat(), strcmp(), strchr(), strrchr(), strlen()

and variants
• Allocate and copy a string: kstrdup(), kstrndup()
• Allocate and copy a memory area: kmemdup()

▶ In include/linux/kernel.h
• String to int conversion: simple_strtoul(), simple_strtol(),

simple_strtoull(), simple_strtoll()
• Other string functions: sprintf(), sscanf()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/16

https://elixir.bootlin.com/linux/latest/source/include/linux/string.h
https://elixir.bootlin.com/linux/latest/ident/memset
https://elixir.bootlin.com/linux/latest/ident/memcpy
https://elixir.bootlin.com/linux/latest/ident/memmove
https://elixir.bootlin.com/linux/latest/ident/memscan
https://elixir.bootlin.com/linux/latest/ident/memcmp
https://elixir.bootlin.com/linux/latest/ident/memchr
https://elixir.bootlin.com/linux/latest/ident/strcpy
https://elixir.bootlin.com/linux/latest/ident/strcat
https://elixir.bootlin.com/linux/latest/ident/strcmp
https://elixir.bootlin.com/linux/latest/ident/strchr
https://elixir.bootlin.com/linux/latest/ident/strrchr
https://elixir.bootlin.com/linux/latest/ident/strlen
https://elixir.bootlin.com/linux/latest/ident/kstrdup
https://elixir.bootlin.com/linux/latest/ident/kstrndup
https://elixir.bootlin.com/linux/latest/ident/kmemdup
https://elixir.bootlin.com/linux/latest/source/include/linux/kernel.h
https://elixir.bootlin.com/linux/latest/ident/simple_strtoul
https://elixir.bootlin.com/linux/latest/ident/simple_strtol
https://elixir.bootlin.com/linux/latest/ident/simple_strtoull
https://elixir.bootlin.com/linux/latest/ident/simple_strtoll
https://elixir.bootlin.com/linux/latest/ident/sprintf
https://elixir.bootlin.com/linux/latest/ident/sscanf

Linked lists

▶ Convenient linked-list facility in include/linux/list.h
• Used in thousands of places in the kernel

▶ Add a struct list_head member to the structure whose instances will be part of
the linked list. It is usually named node when each instance needs to only be part
of a single list.

▶ Define the list with the LIST_HEAD() macro for a global list, or define a
struct list_head element and initialize it with INIT_LIST_HEAD() for lists
embedded in a structure.

▶ Then use the list_*() API to manipulate the list
• Add elements: list_add(), list_add_tail()
• Remove, move or replace elements: list_del(), list_move(), list_move_tail(),

list_replace()
• Test the list: list_empty()
• Iterate over the list: list_for_each_*() family of macros

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/16

https://elixir.bootlin.com/linux/latest/source/include/linux/list.h
https://elixir.bootlin.com/linux/latest/ident/list_head
https://elixir.bootlin.com/linux/latest/ident/LIST_HEAD
https://elixir.bootlin.com/linux/latest/ident/list_head
https://elixir.bootlin.com/linux/latest/ident/INIT_LIST_HEAD
https://elixir.bootlin.com/linux/latest/ident/list_add
https://elixir.bootlin.com/linux/latest/ident/list_add_tail
https://elixir.bootlin.com/linux/latest/ident/list_del
https://elixir.bootlin.com/linux/latest/ident/list_move
https://elixir.bootlin.com/linux/latest/ident/list_move_tail
https://elixir.bootlin.com/linux/latest/ident/list_replace
https://elixir.bootlin.com/linux/latest/ident/list_empty

Linked lists examples 1/2

From include/soc/at91/atmel_tcb.h

/*
* Definition of a list element, with a
* struct list_head member
*/

struct atmel_tc
{

/* some members */
struct list_head node;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/16

https://elixir.bootlin.com/linux/latest/source/include/soc/at91/atmel_tcb.h

Linked lists examples 2/2

From drivers/misc/atmel_tclib.c
/* Define the global list */
static LIST_HEAD(tc_list);

static int __init tc_probe(struct platform_device *pdev) {
struct atmel_tc *tc;
tc = kzalloc(sizeof(struct atmel_tc), GFP_KERNEL);
/* Add an element to the list */
list_add_tail(&tc->node, &tc_list);

}

struct atmel_tc *atmel_tc_alloc(unsigned block, const char *name)
{

struct atmel_tc *tc;
/* Iterate over the list elements */
list_for_each_entry(tc, &tc_list, node) {

/* Do something with tc */
}
[...]

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/16

https://elixir.bootlin.com/linux/latest/source/drivers/misc/atmel_tclib.c

	About Bootlin
	Generic course information
	Linux Kernel Introduction
	Linux kernel sources
	Linux kernel source code

	Linux Kernel Usage
	Kernel configuration
	Compiling and installing the kernel
	Booting the kernel
	Using kernel modules

	Developing kernel modules
	Describing hardware devices
	Discoverable hardware: USB and PCI
	Describing non-discoverable hardware

	Introduction to pin muxing
	Linux device and driver model
	Introduction
	Example of the USB bus
	Platform drivers

	Introduction to the I2C subsystem
	Kernel frameworks for device drivers
	User space vision of devices
	Character drivers
	The concept of kernel frameworks
	Device-managed allocations
	Driver data structures and links

	The input subsystem
	Memory Management
	I/O Memory
	The misc subsystem
	Processes, scheduling and interrupts
	Processes and scheduling
	Sleeping
	Interrupt Management

	Concurrent Access to Resources: Locking
	Direct Memory Access
	DMA main principles
	Kernel APIs for DMA

	Kernel debugging
	Power Management
	Kernel Resources
	Last slides
	Appendix
	Backup slides
	mmap
	Useful general-purpose kernel APIs

